Soil Survey Laboratory Data and Descriptions for Some Soile of

· · WISCONSIN

SOIL CONSERVATION SERVICE • U.S. DEPARTMENT OF AGRICULTURE In cooperation with Research Division of the College of Agricultural and Life Sciences, University of Wisconsin

Soil survey investigations reports already published:

SSIR No. 1 Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples

Soil Survey Laboratory Data and Descriptions for Some Soils of:

```
2
                North Dakota
SSIR No.
                Towa
SSIR No.
          3
SSIR No.
          4
                Kansas
SSIR No.
          5
                Nebraska
                Arkansas, Louisiana, and Missouri
SSIR No.
SSIR No.
          7
                Montana
SSIR No.
                Wyoming
SSIR No.
                Minnesota
                Colorado
SSIR No. 10
SSIR No. 11
                0klahoma
SSIR No. 12
                Puerto Rico and the Virgin Islands
SSIR No. 13
                Mississippi
                Kentucky
SSIR No. 14
SSIR No. 15
                Tennessee
SSIR No. 16
                North Carolina, South Carolina, and Georgia
SSIR No. 17
                Wisconsin
SSIR No. 18
                Indiana
SSIR No. 19
                Illinois
SSIR No. 20
                New England States
```

SSIR No. 21 A Toposequence of Soils in Tonalite Grus in the Southern California Peninsular Range

Soil Survey Laboratory Data and Descriptions for Some Soils of:

SSIR No.	22	Alabama and Florida
SSIR No.	23	Nevada
SSIR No.	24	California
SSIR No.	25	New York
SSIR No.	26	New Jersey
SSIR No.	27	Pennsylvania
SSIR No.	28	Arizona
SSIR No.	29	Hawaii
SSIR No.	30	Texas
SSIR No.	31	Iowa
SSIR No.	32	Wyoming
SSIR No.	33	Minnesota

Soil Survey Laboratory Data and Descriptions for Some Soils of...

·· WISCONSIN

November 1979

SOIL CONSERVATION SERVICE • U.S. DEPARTMENT OF AGRICULTURE In cooperation with Research Division of the College of Agricultural and Life Sciences, University of Wisconsin

PREFACE

The Soil Survey Investigations Report (SSIR) Series was established to preserve and make available technical information resulting from soil survey investigations. SSIR No. 1, "Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples," revised April 1972, describes in detail the methods used in the soil survey laboratories. One report involves a single specific study. Other reports in the series contain medon descriptions and data from the individual states and Puerto Rice and the

This report contains pedon descriptions and data obtained in Wisconsin from 1948 to 1975. The majority of laboratory analyses were conducted at the Soil Survey Laboratory, Lincoln, Nebraska.

Laboratory data for different soils cannot always be compared without allowance for the method. Methods are indexed by code or footnote in data sheet column headings and are identified briefly on the following two pages. Detailed explanations of coded procedures are in SSIR No. 1.

Many of the soil descriptions were prepared as working documents, not necessarily for publication. Some contain unusually detailed information pertinent to specific soil survey investigations. Such information, including older concepts of soil series, relationships among pedons, and field estimates of properties, is useful in a publication of this type. Editing is, therefore, minimal with emphasis toward preservation of descriptive data.

Many pedons no longer represent the soil series with which they were originally identified; a few represent series being considered for reclassification. All were checked against the series classification list. Some pedons are called taxadjuncts to series. All pedons are classified to the family level. In the taxonomic and geographic indexes pedons are arranged by taxonomic unit.

METHODS CODE SYMBOLS

B. Extractable bases

SAMPLE COLLECTION AND PREPARATION

Field sampling 1. NH4OAc extraction 1. Site selection 8. Uncorrected Soil sampling Corrected (exchangeable) See 5B4 a. Stony soils KC1-TEA extraction, pH 8.2 KC1-TEA, pH 8.2 (revised) b. Marsh and swamp soils Laboratory preparation

1. Standard (airdry)

a. Square-hole 2-mm sieve a. Uncorrected
b. Corrected (exchangeable)
NH₁OAc, pH 7.0 (modified)
a. Uncorrected b. Round-hole 2-mm sieve Field moist b. Corrected (exchangeable) Carbonate-containing material Carbonate-indurated material. Base saturation 1. NHuOAc, pH 7.0 3. Sum of cations CONVENTIONS A. Size-fraction base for reporting 1. < 2-mm 2. < size specified Sodium-adsorption ratio F. Calcium saturation
1. NH,OAc, pH 7.0
6. CHEMICAL ANALYSES Data sheet symbols tr: trace, not measurable by quantitative Organic carbon procedure used or less than report-1. Acid-dichromate digestion able amount a. FeSO₄ titration b. CO₂ evolution, gravimetric blank: analysis not run 3. PARTICLE-SIZE ANALYSES
A. Particles <2-mm (pipet method) Nitrogen 1. Kjeldahl digestion 1. Airdry samples a. Carbonate and noncarbonate clay b. Fine clay a. Ammonia distillation Iron Particles >2-mm 1. Dithionite extraction a. Dichromate titration 1. Weight estimates a. By field and laboratory weighingb. From volume and weight estimates EDTA titration Dithionite-citrate extraction 2. Volume estimates FABRIC-RELATED ANALYSES Orthophenanthroline colorimetry Atomic absorption Dithionite-citrate-bicarbonate extraction Bulk density 1. Saran-coated clods a. Potassium thiocyanate colorimetry a. Field state Pyrophosphate-dithionite extraction Sodium-pyrophosphate extraction b. Airdry 30-cm absorption a. Atomic absorption c. 1/3-bar desorption I 1/3-bar desorption II 1/3-bar desorption III Ammonium oxalate extraction a. Atomic absorption Calcium carbonate HCl treatment b. Manometric e. Titrimetric g. 1/10-bar desorption h. Ovendry Water retention Pressure-plate extraction (1/3 or 1/10 bar) Sensitive qualitative method a. Sieved samples a. Visual, gas bubbles H₂SO₄ treatment b. Soil pieces c. Natural clods Pressure-membrane extraction (15 bars) a. Weight gain F. Gypsum a. Field-moist samples Water extract 1. Sand-table absorption a. Precipitation in acetoneb. Indirect estimate 4. Field state Airdry Aluminum Water-retention difference KCl extraction I, 30 min. 1. 1/3 bar to 15 bars d. Fluoride titration 2. 1/10 bar to 15 bars Atomic absorption Linear extensibility Sodium pyrophosphate extraction 1. Dry to moist a. Atomic absorption Micromorphology 6. Ammonium oxalate extraction 1. Thin sections a. Atomic absorption a. Preparation 7. Dithionite-citrate extraction b. Interpretation a. Atomic absorption c. Moved-clay percentage Extractable acidity F. Plasticity index
1. Liquid limit
2. Upper plastic Pactable actuary
Bacl2-triethanolamine I
a. Back-titration with HCl BaCl_-triethanolamine II a. Back-titration with HCl 2. Upper plastic limit 5. ION-EXCHANGE ANALYSES Cation-exchange capacity Carbonate 1. NH₄OAc, pH 7.0 1. Saturation extract a. Direct distillation a. Acid titration b. Displacement, distillation Bicarbonate Sum of cations Saturation extract a. Actidity by BaCl₂-TEA, pH 8.2; bases by NH₁OAc, pH 7.0
b. Sum of bases plus Al
6. NH₂OAc, pH 7.0 leaching tube
a. Direct distillation a. Acid titration Chloride 1. Saturation extract a. Mohr titration b. Potentiometric titration L. Sulfate 1. Saturation extract a. Gravimetric, BaSOu b. EDTA titration

METHODS CODE SYMBOLS -- continued

- 6. CHEMICAL ANALYSES (cont.)
 - M. Nitrate
 - 1. Saturation extract
 - a. PDS acid colorimetry
 - b. Diphenylamine
 - Calcium
 - 1. Saturation extract
 - a. EDTA titration
 - b. Atomic absorption
 - 2. NH,OAc extraction
 - a. EDTA-alcohol separation b. Oxalate-permanganate T

 - c. Oxalate-permanganate II Fe, Al, and Mn removed
 - d. Oxalate-cerate
 - e. Atomic absorption
 - 4. KCl-TEA extraction
 - a. Oxalate-permanganate b. EDTA titration

 - c. Atomic absorption
 - Magnesium
 - 1. Saturation extract

 - a. EDTA titrationb. Atomic absorption
 - 2. NHAOAc extraction
 - a. EDTA-alcohol separationb. Phosphate titration

 - c. Gravimetric, Mg2P2O7
 - d. Atomic absorption
 - 3. NHuCl-EtOH extraction
 - a. EDTA titration
 - 4. KCl-TEA extraction
 - a. Phosphate titration
 - b. EDTA titration
 - e. Atomic absorption
 - P. Sodium
 - 1. Saturation extract

 - a. Flame photometryb. Atomic absorption
 - 2. NH4OAc extraction

 - a. Flame photometry
 b. Atomic absorption
 - Q. Potassium
 - 1. Saturation extract
 - a. Flame photometry
 - b. Atomic absorption
 - 2. NH4 OAc extraction
 - a. Flame photometry
 - b. Atomic absorption
 - Sulfur
 - 1. NaHCO3 extract, pH 8.5
 - a. Methylene blue
 - 2. HCl release (sulfide)
 - a. Iodine titration
 - S. Total phosphorus
 - 1. Perchloric acid digestion
 - a. Molybdovanadophosphoric acid colorimetry

7. MINERALOGY

- A. Instrumental analysis
 - 1. Preparation
 - a. Carbonate removal
 - b. Organic-matter removal

 - c. Iron removald. Particle-size fractionation
 - e. PSDA pretreatment
 - 2. X-ray diffraction
 - a. Thin film on glass, solution pretreatmentb. Thin film on glass, resin pretreatment
 - 3. Differential thermal analysis
- Optical analysis
 - 1. Grain studies
 - 2. Electron microscopy
- Total analysis

 - Chemical
 X-ray emission spectrography
- Surface area
 - 1. Glycerol retention
- 8. MISCELLANEOUS
 - A. Saturated paste, mixed
 - 1. Saturation extract

 - a. Conductivity
 b. Conductivity, quick test
 - 2. Conductivity, saturated paste
 - Saturated paste, capillary rise
 - 1. Saturation extract
 - a. Conductivity
 - ¢.
 - Soil suspensions
 - a. Water dilution
 - b. Saturated paste
 - c. KCl
 - d. NaF
 - e. CaCl₂
 - D. Ratios and estimates
 - 1. To total clay
 - 2. To noncarbonate clay
 - 3. Ca to Mg (extractable)
 - 4. Estimated clay percentage
 - 5. Estimated total salt
 - E. Soil resistivity
 - 1. Saturated paste

CLASSIFICATION INDEX

Page

Page

ALFISOL		ALFISOLContinued		
AQUALF		BORALFContinued		
GLOSSAQUALF		EUTROBORALFContinued		
Typic Glossaqualf Fine-silty, mixed, frigid Auburndale silt loam 7/	21*	Glossic Eutroboralf Coarse-loamy, mixed Alban taxadjunct	7	
Auburndale silt loam	23*	Amery taxadjunct Rosholt taxadjunct	13 113	
Aeric Glossaqualf Fine-loamy, mixed, frigid		Fine-loamy, mixed		
Withee silt loam Withee silt loam	223* 225*	Cushing taxadjunct	39	
Tr		Fine, mixed		
Fine-silty, mixed, frigid Almena silt loam 3/	91	Hibbing taxadjunct	65	
Almena silt loam	11*	Very-fine, mixed		
Almena silt loam	13*	Ontonagon	103	
Wincita Bilt Loom		Ontonagon	105	
Fine, mixed, frigid Altdorf	11	GLOSSOBORALF		
OCHRAQUALF		Typic Glossoboralf Coarse-loamy, mixed		
Typic Ochraqualf		Amery series 4/	111*	
Coarse-loamy, mixed, frigid		Amery series $\overline{\underline{5}}/$	197*	
Cable taxadjunct	31	Amery	15	
		Amery	17	
Fine-loamy, mixed, frigid	274	Eau Pleine	45	
Marshfield silt loam 15/	37* 89*	Magnor taxadjunct Marathon	89 91	
Marshfield silt loam 17/	65"	Padus taxadjunct	107	
Fine-silty, mixed, frigid	87*	Fine-loamy, mixed		
Marshfield taxadjunct 16/	0/"	Fenwood	53	
Aeric Ochraqualf		Santiago silt loam	199*	
Fine-loamy, mixed, frigid		Santiago silt loam	201*	
Marshfield taxadjunct 14/	35*			
		Coarse-silty, mixed		
UMBRAQUALF		Fence taxadjunct	51	
Typic Umbraqualf		Fine-silty, mixed		
Fine-silty, mixed, frigid		Campia silt loam	33*	
Barronett taxadjunct	23	Campia	33	
		Otterholt silt loam	135*	
BORALF		Otterholt silt loam	137*	
		Otterholt silt loam	139*	
EUTROBORALF		Otterholt silt loam	141*	
		Otterholt silt loam	143*	
Typic Eutroboralf		Spencer silt loam	217*	
Coarse-loamy, mixed Iron River taxadjunct	75	Fine-loamy over sandy or sandy-skeletal, mixed		
Fine-loamy, mixed		Onamia loam	123*	
Emmet taxadjunct	49			
		Fine-silty over sandy or		
Aquic Eutroboralf		sandy-skeletal		
Fine-loamy, mixed		Antigo	21	
Rietbrock taxadjunct	111			
•		Fine, mixed		
		Hibbing taxadjunct	63	
		Aquic Glossoboralf		
		Coarse-loamy, mixed Monico taxadjunct	99	
		Fine-loamy, mixed		
		Kert	81	
		Milladore taxadjunct	97	

ALFISOL--Continued

BORALFContinued		UDALFContinued	
GLOSSOBORALFContinued		HAPLUDALFContinued	
Aquic GlossoboralfContinued		Aquollic Hapludalf	
Fine, mixed		Fine, mixed, mesic	
Dolph	43	Manawa silt loam	79*
		Manawa silt loam	81*
Eutric Glossoboralf			
Coarse-loamy, mixed		Mollic Hapludalf	
Emmet taxadjunct	47	Coarse-loamy, mixed, mesic	
Stambaugh taxadjunct	125	Pardeeville loam	151*
		Pardeeville losm	153*
Fine-loamy, mixed			
Arland silt loam 6/	15*	Psammentic Hapludalf	
4		Sandy, mixed, mesic	
UDALF		Richford loamy sand	187*
WARY IMAT P		Whi - W-1-1-1-1	
HAPLUDALF		Ultic Hapludalf	
Temia Nonludal f		Coarse-loamy, mixed, mesic	1014
Typic Hapludalf		Billett taxadjunct 9/	101*
Coarse-loamy, mixed, mesic	97*	Billett taxadjunct 9/	103*
Mecan loamy sand		Billett taxadjunct 9/	105*
Mecan loamy fine sand	99*	Billett taxadjunct $\overline{9}$ /	107*
Fire-lease sixed masis		Discounties simple mani-	
Fine-loamy, mixed, mesic	93*	Fine-silty, mixed, mesic	7 / 0-4
McHenry silt loam		Palsgrove taxadjunct 23/	149*
Miami silt loam	109*	Seaton taxadjunct 30/	203*
Norden loam	117*	Seaton taxadjunct 30/	205*
Theresa	129		
Theresa	131	ENTISOL	
Waymor taxadjunct	133		
Waymor taxadjunct	135	PSAMMENT	
Commonwilty mixed manie		ATTA DEPO T THE AMERICAN	
Coarse-silty, mixed, mesic Seaton taxadjunct 31/	209*	QUARTZIPSAMMENT	
Seaton taxadjunet 31/	203	Train Organization amount	
Financilty mived matic	• •	Typic Quartzipsamment	
Fine-silty, mixed, mesic Dodge silt loam	39*	Mesic, uncoated Boone sand	25*
Dodge silt loam	41*	Boone sand	27*
Fayette silt loam 12/	49*	poore sand	4/*
Fayette silt loam 12/	51*	ITET DO AMBIENTO	
	53*	UDIPSAMMENT	
Fayette silt loam 12/	55*	Manua * . 17.5 *	
Fayette silt loam <u>12</u> / Fayette silt loam	57*	Typic Udipsamment	
McHenry taxadjunct 18/	91*	Mixed, mesic	1504
	95*	Plainfield loamy fine sand	159*
McHenry taxadjunct 18/	29*	Plainfield loamy fine sand	161*
St. Charles silt loam 29/	31*	Plainfield loamy sand	163*
St. Charles silt loam 29/	207*	Plainfield loamy sand	165*
Seaton silt loam <u>12</u> / Seaton silt loam	211*	Plainfield loamy sand	167*
Seacon alle loam	#11.	Mirad friaid	
Pine mixed made		Mixed, frigid	27
Fine, mixed, mesic Kewaunee silt loam	63*	Cromwell taxadjunct	37
	65*	Menahga loamy sand 19/	119*
Kewaunee silt loam	67*	Menahga loamy sand 19/	121*
Kewaunee silt loam Kewaunee silt loam	69*	Nymore loamy sand 21/	59*
	145*	Nymore loamy sand 21/	61*
Ozaukee silt loam	147*	Omega	101
Ozaukee silt loam	741,	HICEACAI	
Fine, illitic, mesic		HISTOSOL	
Morley silt loam	113*	HEMIST	
Morley silt loam	115*	2040A42 W I	
-average ware aven		BOROHEMIST	
Very-fine, mixed, mesic			
Oshkosh silt loam	131*	Typic Borohemist	
Oshkosh silt loam	133*	Dysic	
		Greenwood taxadjunct	61
	*		

HISTOSOL--Continued

SAPRIST		<u>OCHREPT</u>	
BOROSAPRIST		DYSTROCHREPT	
Typic Borosaprist Dysic		Typic Dystrochrept Coarse-loamy, mixed, frigid	
Greenwood taxadjunct	59	Sarona taxadjunct	115
Offictions caused such		Sarona taxadjunct	117
Euic			
Lupton	83	EUTROCHREPT	
Lupton	85		
Seelyeville	119	Dystric Entrochrept	
Tarric Bornespriet		Coarse-loamy, mixed, frigid	19
Terric Borosaprist Loamy, mixed, dysic		Amery taxadjunct Magnor taxadjunct	87
Beseman	29	nagnot canadiunce	٥,
резещап	4.7	FRAGIOCHREPT	
Loamy, mixed, euic			
Dawson taxadjunct	41	Typic Fragiochrept	
		Coarse-loamy, mixed, frigid	
Sandy or sandy-skeletal,		Ahmeek	5
mixed, euic			_
Markey	93	HOLLISOL	
Tawas	127	***************************************	
14449		AQUOLL	
Ferrihumic, euic		Menorit	
	95	Tunta Hanlaguall	
Markey variant	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Typic Haplaquoll Coarse-loamy, mixed, frigid	
MEDISAPRIST		Adolph silty clay loam	5*
Typic Medisaprist		Fine-silty, mixed, frigid	
Euic, mesic		Adolph variant 2/	7*
Houghton	71	months and and all	•
Houghton	73	Fine-silty, mixed, mesic	
Honghton		Ossien silty clay loam 22/	43*
Touris Medicosvist		Pella silty clay loam 24/	45*
Terric Medisaprist		rella silty tlay loam 24/	45
Loamy, mixed, euic, mesic	109	War ward wards	
Palms	103	Fine, mixed, mesic	17*
a 1 1 3 3 4 3		Ashkum silt loam	19*
Sandy or sandy-skeletal,		Ashkum silt loam	
mixed, euic, mesic		Poygan silty clay loam	183*
Adrian	3		
INCEPTISOL		Very-fine, mixed, mesic Poygan taxadjunct <u>28</u> /	185*
AQUEPT		Clayey over sandy or sandy-skeletal,	
		mixed, mesic	
HAPLAQUEPT		Poy silty clay loam	181*
Aeric Haplaquept		BOROLL	
Coarse-loamy, mixed, nonacid, frigid		· ·	
Sherry taxadjunct	123	ARGIBOROLL	
71 <i>01</i>		Maria Arathanall	
Very-fine, mixed, nonacid, frigid	AE .	Typic Argiboroll	
Bergland	25	Coarse-loamy, mixed	25
Bergland	27	Chetek taxadjunct	35
		A	
Fine-silty, mixed, nonacid,		Aquic Argiboroll	
frigid	A.	Fine-loamy, mixed	_
Barronett taxadjunct <u>8</u> /	3*	Alstad taxadjunct	9
_			
Fine-silty, over clayey, mixed,	i.		
frigid			
Sherry variant	121		
-			

MOLLISOL--Continued

MOLLISOL--Continued

What a desired			
UDOLL—Continued		ORTHODContinued	
ARGUIDOLL		HAPLORTHODContinued	
Typic Argiudoll Fine-loamy, mixed, mesic Hochheim Hochheim Markesan silt loam 13/ Ringwood silt loam Ringwood silt loam	67 69 83* 193* 195*	Alfic Haplorthod Coarse-loamy, mixed, frigid Rumet fine sandy loam 10/ Emmet loam 11/ Lafont silt loam 10/ Lafont silt loam 10/	47* 125* 75* 77*
Fine-silty, mixed, mesic Mendota silt losm 20/ Plano silt losm 25/ Plano silt losm 25/ Plano silt losm Plano silt losm	85* 71* 73* 169* 171*	Fine-loamy, mixed, frigid Onaway loam <u>10</u> / Onaway loam <u>10</u> /	127* 129*
Fine, mixed, mesic	A 64		
Peebles silty clay loam Peebles silty clay loam	155* 157*	* Page number refers to SSIR 17,	
Fine, illitic, mesic		2/ through 31/ - see Soil Series Inde	x footnotes.
Varna silt loam Varna silt loam	219* 221*		
HAPLUDOLL			
Typic Hapludoll			
Fine-silty, mixed, mesic Port Byron silt loam Port Byron silt loam Port Byron silt loam Port Byron silt loam Port Byron, bench phase 27/ Port Byron, bench phase 27/ Port Byron, bench phase 27/ Entic Hapludoll Sandy, mixed, mesic Sparta loamy sand Sparts loamy sand	173* 175* 177* 179* 189* 191*		
ORTHOD			
FRAGIORTHOD			
Typic Fragiorthod Sandy, mixed, frigid Kalkaska variant	77		
Coarse-loamy, mixed, frigid Gogebic taxadjunct	55		
Alfic Fragiorthod Coarse-loamy, mixed, frigid Gogebic taxadjunct HAPLORTHOD	57		
Typic Haplorthod Sandy, mixed, frigid Kalkaska	79		

CLASSIFICATION INDEX

SSIR No. 17

	Page	the contract of	Page
ALFISOL		ALFISOL—Continued	
AQUALF	• .	BORALFContinued	
GLOSSAQUALF		GLOSSOBORALFContinued	
Typic Glossaqualf Fine-silty, mixed, frigid Auburndale Auburndale	21 23	<u>Eutric Glossoboralf</u> Fine-loamy, mixed Arland <u>6</u> /	15
Aeric Glossaqualf		UDALF	
Fine-loamy, mixed, frigid Withee	223	HAPLUDALF	
Withee	225	Typic Hapludalf	
Fine-silty, mixed, frigid Almena <u>3</u> / Almena	9 11	Coarse-loamy, mixed, mesic Mecan Mecan	97 99
Almena	13	Fine-loamy, mixed, mesic	
OCHRAQUALF		McHenry Miami	93 109
Typic Ochraqualf		Norden	117
Fine-loamy, mixed, frigid Marshfield 15/	37	Coarse-silty, mixed, mesic	200

-			
Din		Fine-silty, mixed, mesic	
Fine-silty, mixed, frigid	87	Dodge	39
Marshfield taxadjunct 16/	67	Dodge	41
		Fayette 12/	49
Aeric Ochraqualf		Fayette $\overline{12}$ /	51
Fine-loamy, mixed, frigid		Favette 12/	53
Marshfield taxadjunct <u>14</u> /	35	Fayette 12/	55
		Favette	57
BORALF		McHenry taxadjunct 18/	91
		McHenry taxadjunct 18/	95
GLOSSOBORALF		St. Charles 29/	29
		St. Charles 29/	31
Typic Glossoboralf			207
Fine-silty, mixed		Seaton 12/	
Campia	33	Seaton	211
Otterholt	135		
Otterholt	137	Fine, illitic, mesic	
Otterholt	139	Morley	113
	141	Morley	115
Otterholt	143		
Otterholt	217	Fine, mixed, mesic	
Spencer	217	Kewaunee	63
		Kewaunee	65
Coarse-loamy, mixed		Kewaunee	67
Amery <u>4</u> /	111	Kewaunee	69
Ame <i>r</i> y <u>5</u> /	197	0zaukee	145
	and the second second	Ozaukee	147
Fine-loamy, mixed			
Santiago	199	Very-fine, mixed, mesic	
Santiago	201	Oshkosh	131
		Oshkosh	133
Fine-loamy over sandy or		Californ	
sandy-skeletal, mixed		Aquollic Hapludalf	100
Опаміа	123	Fine, mixed, mesic	
***		Manawa	79
			81
		Manawa	. 01
		M-11/2 - W1-4-16	
		Mollic Hapludalf	
		Coarse-loamy, mixed, mesic	151
		Pardeeville	151
		Pardeeville	153
		Psammentic Hapludalf	
		Sandy, mixed, mesic	
		Richford	187
	. 1	RICHIOTA	10/

ALFISOLContinued	Page	MOLLISOLContinued	Page
WretoonContribled		•	
UDALFContinued		UDOLLContinued	
HAPLUDALFContinued		HAPLUDOLL Continued	
Ultic Hapludelf			
Coarse-losmy, mixed, mesic		Very-fine, mixed, mesic	
Billett taxadjunct 9/	101	Poygan taxadjunct 28/	18
Billett taxadjunct 9/	103		
Billett taxadjunct 9/	105	Clayey over sandy or sandy-skeletal,	
Billett taxadjunct 9/	107	mixed, mesic	
		Poy	18
Fine-silty, mixed, mesic		•	
Palsgrove taxadjunct 23/	149	UDOLL	
Seaton taxadjunct 30/	203		
Seaton taxadjunct 30/	205	ARGIUDOLL	
- 			
ENTISOL		Typic Argiudoll	
		Fine-loamy, mixed, mesic	
		Markesan <u>13</u> /	
<u>PSAMMENT</u>		Ringwood	1
		Ringwood	1
QUARTZIPSAMMENT			
•		Fine-silty, mixed, mesic	
Typic Quartzipsamment		Mendata <u>20</u> /	
Mesic, uncoated		Plano 25/	
Boone	25	Plano 25/	
Boone	27	Plano]
		Plano	1
UDIPSAMMENT		Tr. 133141	
May 1 - 9131		Fine, illitic, mesic	2
Typic Udipsamment		Varna	
Mixed, frigid		Varna	7
Menanga 19/	119		
Menahga 19/	121	Fine, mixed, mesic	
Nymore 21/	59	Peebles	1
Nymore <u>21</u> /	61	Peebles	•
Mixed, mesic		HAPLUDOLL	
Plainfield	159		
Plainfield	161	Typic Hapludoll	
Plainfield	163	Fine-silty, mixed, mesic	
Plainfield	165	Port Byron	
Plainfield	167	Port Byron	
		Port Byron 26/	
INCEPTISOL		Port Byron	
721 400 7 11 40-		Port Byron 27/	
AQUEPT		Port Byron 27/	
MATE A COMPANY			
HAPLAQUEPT		Entic Hapludoll	
Mallia Washamas		Sandy, mixed, mesic	
Mollic Haplaquept		Sparta	
Fine-silty, mixed, nonacid, frigid	•	Sparta	:
Barronett taxadjunct 8/	3		
MOLLISOL		SPODOSOL	
AQUOLL		ORTHOD	
HAPLAQUOLL		HAPLORTHOD	
Typic Haplaquoll		Alfic Haplorthod	
Coarse-loamy, mixed, frigid		Coarse-loamy, mixed, frigid	
Adolph	5	Emmet 10/	
- -	-	Emmet 11/	1
		<u>-</u>	

Adolph variant <u>2</u> /	7	Lafont 10/	77
Fine-silty, mixed, mesic Ossian 22/ Pella <u>24</u> /	43 45	Fine-loamy, mixed, frigid Onaway $\frac{10}{10}$ /	127 129
Fine, mixed, mesic Ashkum Ashkum	17 19	÷	
Poygan	183	2/ through 31/ - see Soil Series	Index footnotes.

Classification	Soil Series	Page	Classification	Soil Series	Page
ADAMS COUN	TY		DANE COUN'	<u>r_y</u>	
Entisol			Alfisol		
Psamment	District and Japanes and	1504	Udalf	D-4:14 1	/ 14
Udipsamment	Plainfield loamy sand Plainfield loamy sand	159* 161*	Hapludalf	Dodge silt loam	41*
ASULAND CO	UNTY		Histosol Saprist		
ASHLAND CO	, O N 1 1		Medisaprist	Houghton	71
Alfisol			W-3311		
Boralf Glossoboralf	Hibbing taxadjunct	63	Mollisol Udoll		
			Argiudoll	Plano silt loam	171*
BARRON COU	NTY		DODGE COU	NTY	
Alfisol					
Aqualf Glossaqualf	Almena silt loam 3/	9*	Alfisol Udalf		
•		•	Hapludalf	McHenry taxadjunct 18/	91*
Boralf Glossoboralf	A	111*		McHenry silt loam	93*
OTORRODOLUII	Amery series 4/ Amery series 5/	111^ 197*		McHenry taxadjunct <u>18</u> / Miami silt loam	95* 109*
	Arland silt loam 6/	15*		St. Charles silt loam 29/	29*
	Campia silt loam	33*		St. Charles silt loam 29/	
	Qnamina loam	<u>123</u> *	-		
	Otterholt silt loam	135*	Mollisol		
Inceptisol	Spencer silt loam	217*	Aquoll Haplaquoll	Ossian silty clay loam 22	/ 43*
Aquept			mapraduorr	Pella silty clay loam 24/	
Haplaquept	Barronett taxadjunct 8/	3*			
			Udol1		
BAYFIELD	COUNTY		Argiudoll	Markesan silt loam <u>13</u> / Mendata silt loam 20/	83* 85*
Alfisol				Plano silt loam 25/	71*
Boralf	•			Plano silt loam 25/	73*
Eutroboralf	Hibbing	65	D C 11 C T A C C C		
Spodosol			DOUGLAS CO	OUNTY	
Orthod			Alfisol		
Fragiorthod	Gogebic taxadjunct	55	Boralf		
	Kalkaska variant	77	Eutroboralf	Ontonagon Ontonagan	103 105
Haplorthod	Kalkaska	79		onconagan	143
-			Entisol		
CALUMET CO	UNTY		Psamment Udipsamment	Omega	101
Alfisol	•		oolpoument	omega	202
Udalf		cat	Inceptisol		
Hapludalf	Kewaunee silt loam Manawa silt loam	63* 79*	Aquept Haplaquept	Bergland	25
	Theresa	129	nehradeeke	Bergland	27
•	Theresa	131		-	
Mollisol			FOND DU L	AC COUNTY	
Aquoll			Alfisol		
Haplaquoll	Poygan silty clay loam	183*	Udalf		
			Hapludalf	Kewaunee silt loam	65*
Udoll Argiudoll	Hochheim	67		Manawa silt loam	81*
6100011	Hochheim	69	Mollisol	•	
			Udo11		
COLUMBIA	COUNTY		Argiudoll	Peebles silty clay loam Peebles silty clay loam	155* 157*
Alfisol				records ourty cany room	107
Udalf	· .				
Hapludalf	Dodge silt loam	39*			
	Pardeeville loam Pardeeville loam	151* 153*		•	
	AND THE INCH				
Mollisol					
Udol1 Argiudol1	Plano silt loam	169*			
WERTHOOTT	Ringwood silt loam	193*		-	
	Ringwood silt loam	195*			

Classification	Soil Series	Page	Classification	Soil Series	Page
FOREST COU	TY		LA CROSSE	COUNTY	
Alfisol Aqualf Ochraqualf	Cable taxadjunct	31	Alfisol Udalf Hapludalf	Seaton taxadjunct $\frac{30}{30}$ /	203* 205*
Boralf Eutroboralf	Iron River taxadjunct	75	Mollisol	Seaton silt loam $12/$	207*
Glossoboralf GRANT COUN	Fence taxadjunct Monico taxadjunct Padus taxadjunct Stambaugh taxadjunct	51 99 107 125	Udoll Hapludoll	Port Byron silt loam Port Byron, bench phase 27/	173* 175* 177* 179* 189*
Alfisol Udalf Hapludalf	Fayette silt loam 12/ Fayette silt loam 12/	49* 51*	LANGLADE C	Port Byron, bench phase 27/ Sparta loamy sand Sparta loamy sand	191* 213* 215*
GREEN LAKE	Fayette silt loam 12/	53*	Histosol		
Alfisol Udalf Hapludalf	Mecan loamy sand Mecan loamy fine sand	97* 99*	Saprist Borosaprist	Beseman Greenwood taxadjunct Lupton	29 59 83
IRON COUNT	· -		MANITOWOC Alfisol	COUNTY	
Inceptisol Ochrept Fragiochrept	Ahmeek	5	Udalf Hapludalf	Kewaunee silt loam Kewaunee silt loam Waymor taxadjunct	67* 69* 133
JACKSON CO Entisol Psamment Quartzipsamment	UNII		MARATHON C	Waymor taxadjunct	135
Angrestheement	Boone sand Boone sand	25* 27*	Aqualf Glossaqualf	Withee silt loam	223*
JEFFERSON Histosol	COUNTY		Ochraqualf Boralf Eutroboralf	Marshfield taxadjunct 14/ Marshfield silt loam 15/ Rietbrock taxadjunct	35* 37* 111
Saprist Medisaprist	Adrian Houghton Palms	3 73 109	Glossoboralf	EauPleine Fenwood Marathon Milladore taxadjunct	45 53 91 97
KENOSHA CO Alfisol Udalf	UNTY		Entisol Psamment Udipsamment	Menahga loamy sand 19/	119*
Hapludalf Mollisol	Morley silt loam	113*	MARINETTE	Menahga loamy sand 19/ COUNTY	121*
Aquoll Haplaquoll	Ashkum silt loam Ashkum silt loam	17* 19*	Histosol Saprist Borosaprist	Tawas	127

Classification	Soil Series	Page	Classification	Soil Series	Page
OCONTO COU	NTY		POLK COUNT	<u> </u>	
Alfisol Boralf	Paret torridinant	49	Alfisol Aqualf	Pausantt toudiust	
Eutroboralf	Emmet taxadjunct		Umbraqualf	Barronett taxadjunct	23
Glossoboralf Histosol	Emmet taxadjunct	47	Boralf Eutroboralf	Alban taxadjunct Amery taxadjunct	7 13
Saprist Borosaprist	Lupton	85		Cushing taxadjunct Rosholt taxadjunct	39 113
	Markey Markey variant Seelyeville	93 95 119	Glossoboralf	Amery Antigo Campia	15 21 33
Spodosol			Entisol	odap za	33
Orthod Haplorthod	Emmet fine sandy loam $\frac{10}{}$	47* 125*	Psamment Udipsamment	Cromwell taxadjunct	37
ONEIDA COU	N T Y	•	Mollisol Boroll		
Histosol Hemist	Greenwood	61	Argiboroll	Alstad taxadjunct Chetek taxadjunct	9 35
Borohemist	ALEGUMOOD	01	PORTAGE CO	UNTY	
Saprist Borosaprist	Dawson taxadjunct	41	Entisol Psamment		
OUTAGAMIE	COUNTY		Udipsamment	Nymore loamy sand $\frac{21}{21}$ /	59* 61*
Spodosol Orthod	· .		RACINE COU	NTY	
Haplorthod	Onaway loam $\frac{10}{10}$ /	127* 129*	Alfisol Udalf Hapludalf	Morley silt loam	115*
OZAUKEE CO	UNTY		Mollisol		
Alfisol \ Udalf			Udoll Argiudoll	Varna silt loam	219*
Hapludalf	Ozaukee silt loam	145*	-	Varna silt loam	221*
PIERCE COU	NTY		RICHLAND C	OUNTY	
Alfisol Boralf			Alfisol Udalf		
Glossoboralf	Otterholt silt loam Otterholt silt loam Otterholt silt loam	137* 139* 141*	Hapludalf	Billett taxadjunct $9/$ Billett taxadjunct $\overline{9}/$ Fayette silt loam $\overline{12}/$ Fayette silt loam	101* 103* 55* 57*
Udalf Hapludalf	Seaton taxadjunct 31/	209*		Norden loam Palsgrove taxadjunct <u>23</u> /	117* 149*
	Seaton silt loam	211*	RUSK COUNT	<u> </u>	
			Alfisol		
			Boralf Glossoboralf	Amery Magnor taxadjunct	17 89
			Inceptisol Ochrept Eutrochrept	Amery taxadjunct Magnor taxadjunct	19 87

Classification	Soil Series	Page	Classification	Soil Series	Page
ST. CROIX	COUNTY		WINNEBAGO	COUNTY	
Alfisol Boralf Glossoboralf	Otterholt silt loam Santiago silt loam Santiago silt loam	143* 199* 201*	Alfisol Udalf Hapludalf	Oshkosh silt loam Oshkosh silt loam	131* 133*
TAYLOR COU Alfisol Aqualf	N T Y	201	Mollisol Aquoll Haplaquoll	Poy silty clay loam Poygan taxadjunct <u>28</u> /	181* 185*
Glossaqualf	Almens silt loam Almens silt loam Auburndale silt loam 7/ Auburndale silt loam	11* 13* 21* 23*	WOOD COUNT Alfisol Aqualf Glossaqualf	<u>Y</u> Altdorf	11
Mollisol Aquoll Haplaquoll	Adolph Adolph variant 2/	5* 7*	Ochraqualf	Withee silt loam Marshfield taxadjunct 16/ Marshfield silt loam 17/	225* 87* 89*
Spodosol Orthod Haplorthod	Lafont silt loam 10/ Lafont silt loam 10/	75* 77*	Boralf Glossoboralf	Dolph Kert	43 81
TREMPEALEA Alfisol Udalf	U COUNTY		Inceptisol Aquept Haplaquept	Sherry variant Sherry taxadjunct	121 123
Hapludalf	Billett taxadjunct 9/ Billett taxadjunct 9/	105* 107*	* Page number refers	s to SSIR No. 17.	
VILAS COUN	<u>T Y</u>		$\underline{2}$ / through $\underline{31}$ / - see	SOIL SERIES INDEX footnot	es.
Spodosol Orthod Fragiorthod	Gogebic taxadjunct	· 57			
WASHBURN_C	OUNTY				
Inceptisol Ochrept Dystrochrept	Sarona taxadjunct Sarona taxadjunct	115 117			
WASHINGTON	COUNTY		1		
Alfisol Udalf Hapludalf	Ozaukee silt loam	147*			
WAUSHARA C	OUNTY				
Alfisol Udalf Hapludalf	Richford loamy sand	187*			
Entisol Psamment Udipsamment	Plainfield loamy sand Plainfield loamy sand Plainfield loamy sand	163* 165* 167*			

Adolph silty clay loam	S61WI-60-2	Haplaquoll	5*
Adolph variant	S61WI-60-3 <u>2</u> /	Haplaquoll	7⁴
Adrian	S74WI-55-1 -	Medisaprist	3
Ahmeek	S49WI-26-1	Fragiochrept	5
Alban taxadjunct	\$75WI-95-7	Eutroboralf	7
Almena silt loam	S47WI-3-17 3/	Glossaqualf	94
Almena silt loam	S60WI-60-1	Glossaqualf	11*
Almena silt loam	S60WI-60-2	Glossaqualf	134
Alstad taxadjunct	S75WI-95-1	Argiboroll	9
Altdorf	S70WI-71-2	Glossagualf	11
Amery series	S47WI-3-12 4/	Glossoboralf	111*
Amery series	\$47WI-3-5 5/	Glossoboralf	197#
Amery taxadjunct	S69WI-48-1	Eutroboralf	13
Amery	569WI-48-2	Glossoboralf	15
•	S69WI-54-1		17
Amery		Glossoboralf	
Amery taxadjunct	S69WI-54-4	Eutrochrept	19
Antigo	S75WI-95-5	Glossoboralf	21
Arland silt loam	87WI-3-23 <u>6</u> /	Glossoboralf	15*
Ashkum silt loam	S58WI-30-1	Kaplaquoll	17*
Ashkum silt loam	S58WI-30-2	Haplaquol1	19*
Auburndale silt loam	S61WI-60-1 7/	Glossaqualf	21
Auburndale silt loam	S61WI-60-4	Glossaqualf	23
Barronett taxadjunct	S47WI-3-29 <u>8</u> /	Haplaquept	3*
Barronett taxadjunct	S75WI-95-4	Umbraqualf	23
Bergland	S64WI-16-2	Haplaquept	25
Bergland	S64WI-16-4	Haplaquept	27
Beseman	S74WI-67-1	Borosaprist	29
Billett taxadjunct	S54WI-52-1 9/	Hapludalf	101
Billett taxadjunct	S54WI-52-2 9/	Hapludalf	1039
Billett taxadjunct	S54WI-61-1 9/	Hapludalf	105*
Billett taxadjunct	S54WI-61-2 9/	Hapludalf	107
Boone sand	S57WI-27-1	Quartzipsamment	251
Boone sand	S57WI-27-2	Quartzipsamment	27
Cable taxadjunct	\$72WI-21-4	Ochraqualf	31
Campia silt loam	\$47WI-3-14	Glossoboralf	334
	\$75WI~95-8	Glossoboralf	33
Campia		Argiborol1	35
Chetek taxadjunct	\$75WI-95-9		37
Cromwell taxadjunct	\$75WI-95+3	Udipsamment	39
Cushing taxadjunct	875WI-95-2	Eutroboralf	39
Dawson taxadjunct	S74WI-85-2	Borosaprist	41
Dodge silt loam	S62WI-11-1	Hapludalf	39*
Oodge silt loam	S62WI-13-1	Hapludalf	41*
Dolph	S70WI-71-3	Glossoboralf	43
CauPleine	870WI-37-1 10/	Glossoboralf	45
Emmet fine sandy loam	S59W1-42-1 11/	Haplorthod	47*
Emmet loam	S59WI-42-2 110/	Haplorthod	125
Emmet taxadjunct	s68WI-42-1 10/	Glossoboralf	47
Emmet taxadjunct	568WI-42-2	Eutroboralf	49
Fayette silt loam	3 <u>12</u> /	Hapludalf	49
Fayette silt loam	4 <u>12</u> /	Hapludalf	513
Fayette silt loam	5 <u>12</u> /	Hapludalf	53
Fayette silt loam	$2\overline{12}/$	Hapludalf	55
Fayette silt loam	54 8W I-52-20	Hapludalf	57
Fence taxadjunct	S72WI-21-6	Glossoboralf	51.
Fenwood	S70WI-37-4	Glossoboralf	53
Gogebic taxadjunct	S49WI-4-3	Fragiorthod	55
Gogebic taxadjunct	872WI-63-1	Fragiorthod	-57
Greenwood taxadjunct	874WI-67-2	Borosaprist	59
Granway caxadimice	974WT-95-1	Rorohemist	61

\$64WI-2-1 \$64WI-4-1 \$68WI-8-1

Hibbing taxadjunct Hibbing taxadjunct Hochheim 63 65 67

Glossoboralf Eutroboralf Argiudoll

SOIL SERIES INDEX

Series	Soil Survey	Classification	<u>Page</u>
Iron River taxadjunct	S72WI-21-9	Eutroboralf	75
Kalkaska variant	S49WI-4-1	Fragiorthod	77
Kalkaska	S49WI-4-2	Haplorthod	79
Kert	S70WI-71-5	Glossoboralf	81
Kewaunee silt loam	S59WI-8-1	Hapludalf	63*
Kewaunee silt loam	S59WI-20-2	Hapludalf	65*
Kewaunee silt loam	S60WI-36-1	Hapludalf	67*
Kewaunee silt loam	S60WI-36-2	Hapludalf	69*
Lafort silt loam	S60WI-60-3 10/	Haplorthod	75*
Lafont silt loam	S60WI-60-4 10/	Haplorthod	7.3 7.7.*
Lupton	\$74WI-67-3	Borosaprist	83
Lupton	S74WI-83-1	Borosaprist	85
Magnor taxadjunct	S69WI-54-2	Eutrochrept	87
Magnor taxadiunct	S69WI-54-3	Glossoboralf	89
Manawa silt loam	S60WI-8-1	Hapludalf	79☆
Manawa silt loam	S59WI-20-4	Hapludalf	81*
Marathon	S70WI-37-3	Glossoboralf	91
Markesan silt loam	854WI-14-20 13/	Argiudoll	83*
Markey	S74WI-83-2	Borosaprist	93
Markey variant	874WI-83-4	Borosaprist	95
Marshfield taxadjunct	S61WI-37-1 14/	Ochraqualf	35*
Marshfield silt loam	\$61WI-37-2 15/	Ochraqualf	37*
Marshfield taxadjunct	861WI-71-2 16/	Ochraqualf	87*
Marshfield silt loam	\$61WI-71-3 17/	Ochraqualf	89*
McHenry taxadjunct	852WI-14-24 18/	Hapludalf	91*
McHenry silt loam	S54WI-14-19	Hapludalf	93*
McHenry taxadjunct	S54WI-14-23 18/	Hapludalf	95*
Mecan loamy sand	S62WI-24-1	Hapludalf	97*

Menahga loamy sand	857WI-37-1 19/	Udipsamment	119*
Menahga loamy sand	\$57WI-37 - 2 19/	Udipsamment	1.21*
Mendota silt loam	S53WI-14-23 20/	Argiudoll	85*
Miami silt loam	853WI-14-21	Hapludalf	1.09*
Milladore taxadjunct	870WI-37-2	Glossoboralf	97
Monico taxadjunct	S72WI-21-5	Glossoboralf	99
Morley silt loam	S58WI-30-3	Hapludalf	113%
Morley silt loam	S58WI-51-4	Hapludalf	115*
Norden loam	\$48WI-52-2	Hapludalf	117*
Nymore loamy sand	S57WI-49-1 21/	Udipsamment	59*
Nymore loamy sand	857WI-49-2 21/	Udipsamment	61*
Omega	849WI-16-1	Udipsamment	10)
Onamia loam	S47WI-3-7	Glossoboralf	123≑
Onaway loam	S59WI-44-1 10/ S59WI-44-2 10/	Haplorthod	127*
Onaway loam	S59WI-44-2 10/	Haplorthod	129*
Ontonagon	S64WI-16-1	Eutroboralf	103
()etru s corta	96 1812 <u>16 0</u>	He phone have a dist	1 102

SOIL SERIES INDEX

	Soil Suryey		
Series	No. 1/	Classification	Page
Plainfield loamy sand	\$57 W I-69-2	Udipsamment	165*
Plainfield loamy sand	S57WI-69-4	Udipsamment	167*
Plano silt loam	S54WI-14-21 25/	Argiudoll	71*
Plano silt loam	$553WI - 14 - 22 \overline{25}$	Argiudoll	73*
Plano silt loam	S62WI-11-2	Argiudoll	169*
Plano silt loam	S62WI-13-2	Argiudoll	171*
Port Byron silt loam	S56WI-32-1	Hapludoll	173*
Port Byron silt loam	S57WI-32-1	Hapludoll	175*
Port Byron silt loam	S57WI-32-2 26/	Hapludoll	17 7 *
Port Byron silt loam	S57WI-32-3	Hapludoll	179*
Port Byron, bench phase	S56WI-32-3 27/	Hapludoll	189*
Port Byron, bench phase	S56WI-32-4 27/	Hapludoll	191*
Poy silty clay loam	S57WI-70-1	Haplaquoll	181*
Poygan silty clay loam	S57WI-8-1	Haplaquoll	183*
Poygan taxadjunct	S57WI-70-3 <u>28</u> /	Haplaquoll	185*
Richford loamy sand	S57WI-69-3	Hapludalf	187*
Rietbrock taxadjunct	S70WI-37-5	Eutroboralf	111
Ringwood silt loam	S62WI-11-3	Argiudoll	193*
Ringwood silt loam	S62WI-11-6	Argiudoll	195*
Rosholt taxadjunct	S75WI-95-6	Eutroboralf	113
St. Charles silt loam	S52WI-14-20 29/	Hapludalf	29*
St. Charles silt loam	S52WI-14-27 29/	Hapludalf	31*
Santiago silt loam	S60WI-55-2	Glossoboralf	199*
Santiago silt loam	S60WI-55-3	Glossoboralf	201*
Sarona taxadjunct	S69WI-65-1	Dystrochrept	115
Sarona taxadjunct	S69WI-65-2	Dystrochrept	117
Seaton taxadjunct	S56WI-32-5 30/	Hapludalf	203*
Seaton taxadjunct	S56WI-32-6 30/	Hapludalf	205*
Seaton silt loam	10 11/	Hapludalf	207*
Seaton taxadjunct	S60WI-47-4 31/	Hapludalf	209*
Seaton silt loam	S60WI-47-5	Hapludalf	211*
Seelyeville	S74WI-83-3	Borosaprist	119
Sherry variant	S70WI-71-1	Haplaquept	121
Sherry taxadjunct	S70WI-71-4	Haplaquept	123
Sparta loamy sand	S57WI-32-4	Hapludoll	213*
Sparta loamy sand	\$57WI-32-5	Hapludoll	215*
Spencer silt loam	S47WI-3-28	Glossoboralf	217*
Stambaugh taxadjunct	S72WI-21-7	Glossoboralf	125
Tawas	S74WI-75-1	Borosaprist	127
Theresa	S68WI-8-3	Hapludalf	129
Theresa	S68WI-8-4	Hapludalf	131
Varna silt loam	S58WI-51-1	Argiudoll	219*
Varna silt loam	S58WI-51-2	Argiudoll	221*
Waymor taxadjunct	S68WI-36-1	Hapludalf	133
Wayman tavadiunat	S68WT-36-2	Hanludalf	135

SOIL SERIES INDEX

County numbers (the number following "WI" in the Soil Survey No.) are as follows: Projects sampled before 1974

1.	Adams	42.	Oconto
2.	Ashland	44.	Outagamie
3.	Barron	45.	Ozaukee
4.	Bayfield	47.	Pierce
8.	Calumet	48.	Po1k
11.	Columbia	49.	Portage
13.	Dane	51.	Racine
14.	Dodge	52.	Richland
16.	Douglas	54.	Rusk
20.	Fond du Lac	55.	St. Croix
21.	Forest	60.	Taylor
24.	Green Lake	61.	Trempealeau
26.	Iron	63.	Vilas
27.	Jackson	65.	Washburn
30.	Kenosha	66.	Washington
32.	La Crosse	69.	Waushara
36.	Manitowoc	70.	Winnebago
37.	Marathon	71.	Wood

Projects sampled during 1974

- 55. Jefferson
- 67. Langlade
- 75. Marinette

- 83. Oconto
- 85. Oneida
- 95. Polk

(The following footnotes were designed to be copied and posted on appropriate pages of SSIR No. 17.)

- 2/ This pedon is a variant of Adolph because the sand content is lower and the clay content higher than normal; this pedon is fine-silty rather than coarse-loamy.
- 3/ This pedon is classified in a fine-silty family because 17.5 percent clay rounds to 18 percent.
- 4/ This pedon was sampled as Milaca silt loam; however it is in a coarse-loamy family and belongs in the Amery series.
- 5/ This pedon was sampled as Santiago silt loam; however it is in a coarse-loamy family and belongs in the Amery series.
- 6/ This pedon is classified in a fine-loamy family because the clay content in the upper portion of the control section rounds to 18 percent.
- No tonguing was described when this pedon was sampled. Tonguing was not commonly described in 1961; therefore, it is assumed that tonguing was present and the pedon is classified as a Glossaqualf.
- 8/ This pedon was sampled as Adolph silt loam; however it is in a fine-silty family; it has been correlated as a taxadjunct to the Barronett series.
- 2/ This pedon was sampled Meridian fine sandy loam; however, it is in a coarse-loamy family and lacks high base saturation with depth. This pedon is a taxadjunct to the Billett series.
- 10/ Pedon placement based on series classification because chemical data are incomplete.
- 11/ This pedon was sampled as Onaway loam; however, it is in a coarse-loamy family and belongs in the Emmet series; pedon placement based on series classification because chemical data are incomplete.
- 12/ Pedon sampled as part of Project Z-1-2-8.
- 13/ This pedon of Markesan silt loam has a thinner solum and less pronounced subsoil clay accumulation than is common for the series.
- 14/ This pedon, sampled as Cassel silt loam, has been correlated with Marshfield; it is a taxadjunct because the chroma in the A21 horizon is too high for the typic subgroup.
- 15/ This pedon, sampled as Cassel silt loam, has been correlated with Marshfield silt loam.
- 16/ This pedon is in a fine-silty family; it is a taxadjunct to the Marshfield series.
- 17/ This pedon has the B horizon clay accumulation at greater depth than is common for the Marshfield series.
- 18/ This pedon is in a fine-silty family; it is a taxadjunct to the McHenry series.

SOIL SERIES INDEX--continued

19/ This pedon, sampled as Omega loamy sand, has been correlated with Menanga loamy sand because of parent material color and coarseness of sand.	
20/ This pedon, sampled as Markesan silt loam, has been correlated with Mendota silt loam.	
21/ This pedon, sampled as Kellner loamy sand, has been correlated with Nymore loamy sand.	
22/ This rodon commind on Elba addem alon loom has been committed at the Contact added at the standard and the standard and the standard at th	
	_
	_
	_
	_
	_
	_
·	=
No. 1 Control of the	
	Ξ
(a)	
T	
	_
	=
23/ This pedon does not have the base saturation required for a typic subgroup; it is a taxadjunct to the Palsgrove series.	

24/ This pedon, sampled as Elba silt loam, has been correlated with Pella silty clay loam.

well-drained phase.

25/ This pedon, sampled as Keyser silt loam, has been correlated with Plano silt loam as a moderately

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MRTSC SOIL SURVEY INVESTIGATIONS UNIT LINCOLN, NEGRASKA

SERIES - - - - - -

														LJI	MCOLN,	NEBRA	SKA		
OIL NO) -		•					COUNTY	· ·										
ENERAL	. METHO	10s- -	-					SAMPL	E NOS.	•									
DEPTH	HORI	ZON	(7 = =	PARTIC	E SIZ	E ANALY	315.	T 2MM	, 3Al,	3A1A,	JAIB-	INTR	FINE)	RATIO
						CLAY.	VCQS	CORS	_MEQS	FNES.	_YENS	COST	FNSI	VFS1	<u>, TEXT, </u>	! !	CLA.Y	_C03-	15-
			.05	-002	*005	L.T	. 1	-	28	.25~ 10	Λ5	ñ2		. 002	2	- 02	CIAV	,	84R 70
ge Zi		_	- (, -		- ' '			:	- + PC	T LT ZM	H) PCT	PCT	CLAY
				Journ			1	5126	Class Sand	and part	icle di	gum ce z		- 17	//^-	— ~ • ·		1 2	1 ^
					1 -	Fine	Very	· '*	Same	т	Very	├	Silt Int.	P	-	Inter	Ratio	Non-	Ratio
Depth (in.)	Hor	izon	Sand	Silt (0.05-	Clay	clay	COAFS	e Conrec	Medium	Fine	fine	l	III	l		nationa II	fine clay	arbon- ate	15- bar
(211.)			220.05	0.002)	,	المستو	, I, 5, -T,	1-0.5)	0.25)	(0.25-	0.1-		0.002	0.005	_ sand (2-0.1	60.027	to	clay	to
<u>- , </u>	<u> </u>				10	w)		1	Pet of	< 2,000	•				-	17 172	clay	pet	clay
DLUMN												-	` '-	_ ′	,,	en.	• -		•
Ţ	2	:	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	. 18	19
																			
EPTH	(PARTI	CLE S	IZE ANA	LYSIS,	, MM, S	3B, 3B1	, 382) (BU	KOEN	SETY)				NTENT-				(P	
	ĢΤ	GT	75-20	20-5	5-2	' LT	20-2	1/3-			1/10	481C 1/3-	482 15~	4Cl WRD		.6E18	3Al A LT	8C1A	1/S 8C1E
C M	2 PC T	75 PC7	!	- PCT 1		-074	PCT	BAR	ORY		BAR	BAR	BAR	CM/		2	.002	H20	CACL
\			•			•	2120	0/66	G/CÇ		PCT	PCT	PCT	CM		PET	PC T		
,	vo1-	Size c	lass and	partic	le diame	ter (mm)	Fu.	k dens	ity	Γ.,	Water (ontent			Carbo		pH	
Depth	ume			<u>.**e</u> ;	ight	1<0.074	50-5	1/3- bar	Oven-	COLE	1/10-	1/3-	15-	1/3-to	l [′]	as C			
(in.)	> 2	> 75	75-20	20-5	5-2	PARE ROO mests	pet		-'		per	bar	bar	15-bar cm/cm	ı	< 2mm	KO.002	(1:1) H ₂ O	(1:2) CaCl ₂
	pct	, pet		pet	< 75mm	East made	< 20	g/cc	g/cc	<u>i.</u>	pet	pet	pet	(in-/in-)		pet	pet		Value
OLUNN										-									-
1	20	, 21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	36
EPTH (C MAT	TER) C/N			(+ −EX 6N2E				44}	ACT Y	4L 6G1D	CAT 543A	EXCH1 SAGA	8DI	8D3	CA 5F	5C3	SAT) SCI
	DRGN	NITG		EXT	TOTL	CA	MG	NA.		SUM	BACL	KCL	EXTB	NHAC	NHAC	ÇA	SAT	EXTB	NHAC
CM	PCT	рст		FE PCT	PCT (MEC	EXT8 / 100		EXT -	ACTY)	CLAY	#G	NHAC PCT	PCT	PCT
											-					T 457			 -
_	_	anic we		.l	Ĩ I	<u> </u>	Extra	ctable b	ases 52	1 Sum	ext.	KCl	T-12- 12-	ch.cap.	Ratio	Ratio	Ca	Base sa	
Depth (in.)	Organic carbon	Witro	c/N	Ext.	Total phos-	Ca	Mex	l Na.	l ĸ	extract	a cittty	ext.	bases	ЛН_ЦОА С	NH OAC	Ca	satu-	Extract- able	CEC
(===,			1 ","	8.5	phorus					able Dases		A1	plus acidity		clay		ration NH _L OAc	acidity	LEC
	pet			Fe .	pet														
	pec	pet		pet]	-			ziec.	100g	<u> </u>				· , ,	Į,	pct	pct	pct
	1-		,																
DLUMN	39	40	41	42	43	44	45	44	47	48	49	50	51	52	53	54	55	56	57
EPTH	(SATUR	ATED	PASTE)	NA NA	NA	SALT	6YP	(-		SATURA	TION'	EXTRAC	T 8A1-)	ATTERE	BERG
-	8E1	8C 1 B	6A	502	5E	8D5	6 F 1 A			AG MG	A196	6Q1A K			CL 6KIA		MD3	4F1	PL ST
	REST OHM~	PH	H20	ESP	SAR	TOTL		EC MMHOS/										LMIT	INDX
CM	CM		PCT	PCT		PPM	PC Y	CH	· ·			MEQ .	/ LITE	R			- - -) РСТ	
	Satur	ated I	estë.	<u> </u>	1 1			1		<u></u>	Sati	uration	extrac	t				Atterb	erg
Depth	Resis-	Ī	Water	Exch.		Total soluble	gAbans	Elec-	1	_ <u> </u>	1				Ť	i	_	Liquid	Plast
(in.)	tivity	PH	et sat.	ne.	tion	salt		trical	ا	"	w. [ĸ	co3	нсоз	Cl	so _{la}	MO3	limit	inder
					ratio			conduc-	Cs.	Mg	Ne.	А.	~3	ا * ا	٠- ا	~~ 4	3		
	ahar		pet	Do.			pet	mmhos/	<u> </u>	L			man 54.3					, ,,,	
	opm-cm	1.	1 bec	pet	1,	ppm		Cm	<u> </u>				meq/li	re.t				pet	
DLUMN	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76

Remarks: EXAMPLE DATA SHEET HEADINGS -- This page alternates computer data sheet headings with printed data sheet headings and column numbers.

Column numbers refer to more complete column headings on an adjoining page.

COLUMN HEADINGS FOR COMPUTER PRINTED DATA SHEETS

```
Column
             Depth in centimeters
   5
             Horizon
             Columns 3 through 16 display numbers which are percents of the total weight of particles 2
             millimeters or less in size.
             Total sand (particles range from .05 to 2 millimeters)
             Total silt (particles range from .002 to .05 millimeter)
             Total clay (particles are smaller than .002 millimeter)
   5
6
             Total fine clay (particles are smaller than .0002 millimeter)
   78
             Very coarse sand (particles range from 1 to 2 millimeters)
             Coarse sand (particles range from 0.5 to 1 millimeter)
Medium sand (particles range from 0.25 to 0.5 millimeter)
  9
 10
             Fine sand (particles range from 0.1 to 0.25 millimeter)
             Very fine sand (particles range from .05 to 0.1 millimeter)
 11
             Coarse silt (particles range from .02 to .05 millimeter)
 12
             Fine silt (particles range from .002 to .02 millimeter; these limits also define the range of total
 13
             silt on the International Soil Science Society Scale.)
             Very fine silt (particles range from .002 to .005 millimeter)
 14
 15
             Family texture sand (particles range from 0.1 to 2 millimeters)
 16
             International II (particles range from .02 to 0.2 millimeter; these limits define the range of the
             fine sand on the International Soil Science Society Scale.)
             Fine clay to clay (this is the ratio of fine clay to total clay expressed as percent.)
Noncarbonate clay (this is the percentage of total clay, column 5, minus the percentage of
 17
 18
             carbonate clay, column 36.)
 19
             Ratio of 15-bar water percentage to total clay percentage
             Volume of material greater than 2 millimeters given as a percent of total (sample volume)
 20
 21
             Greater than 75 millimeter material given as a percent of total sample weight
             Particle size range from 20 to 75 millimeters given as a weight percent of all material 75
 22
             millimeters or less in the sample
             Particle size range from 5 to 20 millimeters given as a weight percent of all material 75
 23
             millimeters or less in the sample
 24
             Particle size range from 2 to 5 millimeters given as a weight percent of all material 75
             millimeters or less in the sample
             Particle size range less than 0.74 millimeter given as a weight percent of all material 75
 25
             millimeters or less
 26
             Particle size range from 2 to 20 millimeters given as a weight percent of all material 20
             millimeters or less
 27
             Bulk density of soil desorbed to 1/3-bar given in grams per cubic centimeter
 28
             Bulk density of oven dry soil given in grams per cubic centimeter
 29
             Coefficient of linear extensibility
             Water content of soil desorbed to 1/10-bar given as a percent of oven dry weight
 30
31
32
33
34
             Water content of soil desorbed to 1/3-ber given as a percent of oven dry weight
             Water content of soil fragments described to 15 bars given as a percent of oven dry weight
             Water retention difference given in centimeter per centimeter
             Column used for any water content measurement different from those given in columns 30
 35
36
37
38
39
39
             Carbonate content of the material 2 millimeters or less given as a percent
             Carbonate content of the material .002 millimeter or less given as a percent
             pH of a 1:1 suspension of soil in distilled water
             pH of a 1:2 suspension of soil in .01 M CaClo
             Organic carbon given as a percent
```

```
41
           Organic carbon to nitrogen ratio
42
           Extractable iron given as a percent
43
44
           Total phosphorus given as a percent
           Extractable calcium given in milliequivalents per 100 grams of soil
45
46
           Extractable magnesium given in milliequivalents per 100 grams of soil
           Extractable sodium given in milliequivalents per 100 grams of soil
47
48
           Extractable potassium given in milliequivalents per 100 grams of soil
           Sum of the extractable bases given in milliequivalents per 100 grams of soil
49
           Acidity - barium chloride with triethanolamine measurement - given in milliequivalents per
           100 grams of soil
           Aluminum - potassium chloride extraction - given in milliequivalents per 100 grams of soil
50
           Cation exchange capacity by sum of the extractable bases plus the acidity given in milliequivalents
51.
           per 100 grams of soil
           Cation exchange capacity as measured by ammonium acetate given in milliequivalents per 100 grams
52
           of soil
53
54
           Ratio of ammonium acetate cation exchange capacity to total clay
           Ratio of extractable calcium to extractable magnesium
           Calcium saturation of the ammonium acetate cation exchange capacity given as a percent
55
           Base saturation - sum of the extractable bases divided by the acidity plus the sum of the
           extractable bases - given as a percent
```

<u>k-</u>

Continued

COLUMN HEADINGS FOR COMPUTER PRINTED DATA SHEETS

Column 57 Base saturation - sum of the extractable bases divided by the ammonium acetat	cation
67 Page seturation was of the contractable bases divided by the contraction contract	eation
of base saturation - sum of the extractable bases divided by the ammonium acetato	
exchange capacity - given as a percent	
58 Saturated paste (soil plus water) resistivity given in ohm-cm	
59 Saturated paste (soil plus water) pH	
60 Saturated paste (soil plus water) water content given as a percent	
61 Exchangeable sodium percentage	
62 Sodium adsorption ratio	
63 Total soluble salt given in parts per million	
64 Gypsum given in percent	
65 Electrical conductivity of the saturation extract given in mmhos per centimet.	er.
66 Calcium content of the saturation extract given in milliequivalents per liter	
67 Magnesium content of the saturation extract given in milliequivalents per lit-	er
68 Sodium content of the saturation extract given in milliequivalents per liter	
69 Potassium content of the saturation extract given in milliequivalents per li	er
70 Carbonate (CO ₃) content of the saturation extract given in milliequivalents p	er liter
71 Binawhamata (than) manhant at the manuality and and a married	724

SOIL CLASSIFICATION-TERRIC MEDISAPRIST
SANCY OR SANCY-SKELETAL, MIXED. EUIC. MESIC
SERIES - - - - - - - ADRIAN

SOIL NC - - - - S74HI-55-1 GENERAL METHODS- - -14,1818,241,28

COUNTY - - - JEFFERSON SAMPLE NOS. 74L1474-74L1478 U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

DEPTH	HCRI	ZON	SAND 2- .05	-05-	CLAY	FINE CLAY LT .0002	vcds 2-	CORS 1-	SAND - MEDS .5- .25	FNES -25-	VFNS .10-	.05 .05 .02	-SILT-	VFS1 -005-	SAND	INTR 11 .2- .02		NON- CO3- CLAY	RATI 8DI 15- BAF TO CLAY
									FC1	LI 25									ULA
00-25 25-34 34-66	CAP OA2 CA3																		
66-95	CA4																		
95→150	2 C		91.3	7.5	1.2		7.6	25.2	19.9	26.4	12.2	4.6	2.9		79.1				- 1
EPTH (VOL.	Cre 3	IZE ANA			D. 301	, 2021	. 001	Pw R649	4		AM 11	ER ÇOI		,	CARBO		(- +Pi	
• • •	GT 2 PCT	GT 75 PC T	75-20	20-5	5-2	LT .074	20-2 PCT	1/3- Bar	4A1H GVEN DRY	401	461C 1/10 BAR PCT	481C 1/3- 8AR PCT	482X 15- BAR PCT	4C1 MRD CM/ CM		6E1B LT 2 PCT	3A 1A LT -002 PCT	8CIA 1/1 H20	8C 1/ CA
0-25	GT 2 PCT TR	GT 75 PC T	75-20 (0	20-5 PCT L TR	5-2 T 75 - TR	LT .074	20-2 PCT LT20	1/3- BAR G/CC	GVEN DRY G/CC	401	1/10 BAR PCT	1/3- BAR PCT	15- BAR PCT	MRD CM/ CM		LT 2	LT -002	1/1 H20 4.8	1/ CA
M 00-25 25-34	GT 2 PCT TR TR	GT 75 PC T	75-20 (0 0	20-5 PCT L TR TR	5-2 T 75 - TR TR	LT .074	20-2 PCT LT20 TR TR	1/3- BAR G/CC	4A1H GVEN DRY G/CC	401	1/10 BAR PCT	1/3- BAR PCT	15- BAR PCT 95 103	MRD CM/ CM		LT 2	LT -002	1/1 H20 4.8 5.0	1/ CA
00-25 25-34 34-66	GT 2 PCT TR TR TR	GT 75 PC T	75-20 (0 0	20-5 PCT L TR TR TR	5-2 T 75 - TR TR TR TR	LT .074	20-2 PCT LT20 TR TR TR	1/3- BAR G/CC 	4A1H GVEN DRY G/CC -72 -70	401	1/10 BAR PCT 305 328	1/3- BAR PCT 247 260	15- BAR PCT 95 103 102	MRD CM/ CM		LT 2	LT -002	1/1 H20 4.8	1/ CA 4
00-25 15-34 14-66 56-95	GT 2 PCT TR TR	GT 75 PC T	75-20 (0 0	20-5 PCT L TR TR	5-2 T 75 - TR TR	LT .074	20-2 PCT LT20 TR TR	1/3- BAR G/CC	4A1H GVEN DRY G/CC	401	1/10 BAR PCT	1/3- BAR PCT 247 260	15- BAR PCT 95 103	MRD CM/ CM -39		LT 2	LT -002	1/1 H20 4.8 5.0 5.7	1/ CA
0-25 5-34	GT 2 PCT TR TR TR TR	GT 75 PC T	75-20 (0 0 0	PCT L TR TR TR TR TR	5-2 T 75 - TR TR TR TR	.074 	ZO-2 PCT LT20 TR TR TR TR	1/3- BAR G/CC 	4A1H GVEN DRY G/CC -72 -70	401	1/10 BAR PCT 305 328	1/3- BAR PCT 247 260	15- BAR PCT 95 103 102 121	.39 .41 .39		LT 2	LT -002	1/1 H20 4.8 5.0 5.7 6.1	1/ CA 4 4 5

1	
- Ph	
. [
146.4	1 A.

C#	6A1A ORGN CARB PCT	6B1A NITS PCT	C/N	6C2B EXT FE PCT	TOTL PCT		908B	6P28 NA	6028 K MEG	SUM EXTS			SA 3A EXTB ACTY	-	801 NHAC TO CLAY	8D3 CA TO MG	5F1 SAT NHAC PCT	5C3 EXTB ACTY PCT	SC1 NHAC PCT
000-25	41.8	3.33	13			81.7	13.0	.1	1.6	98	102		198	139		6.3	59	49	69
C25-34	43.2	3.27	13			103	18.4	•2	1.7	123	97.9		221	156		5.6		56 64	79 92
034-66	36.0	2.94	12 10			100 131	28.6 46.9		1.7 1.1	130 179	74.3 67.1		205 246	141 172		3.5 2.8		73	104
C66-95 095-150	29.0 .18	2.78 .008				131	70.7	•3	1.1	117	01.1		240	116		2.0		,,	104
CEPTH	(SATUR	ATED F		NA.	NA		GYP	(~ + -			EXTRACT				_	ATTER	
		8 C 1 E	8.8	502	5E		6F1A	BAIA		6018		edre		6JLA HCO3	6Kla	6LIA SO4	6M1 A NO3	4F1 LQID	4F2
	REST OHM-	PH	H2C	ESP	SAR	TOTL		EC MMHGS/	CA	MĢ	NA	K	COS	MCUS	ĢĽ.	204	NUS	LHIT	
CP	CM		PCT	PCT		PPM	PCT	CM				MEQ	/ LITER				1	PCT	
000-25	830		403			6900		2.50	18-4	6.7	•1	1.5	0	.3	.5	4.2	23.5		
025-34	1100		588			6000		1.61	10.7	4.3	TR	1.0	0	-0	• <u>2</u>	3.9	12.4		
034-66	740		457			7400		2.50	14.6	9.4	TR	1-4	0	•3	•5 •7	4.8	21.0 5.8		
Q66-95 Q95-150	1300	5.8	556			4500		1.14	6.6	5.3	-1	-6	O	• • •	• 1	5.5	7.8		
DEPTH								ARACTEI				·	CONTE	!	 }			,	
	8F	ISTAT	BG P	DECOMPO	19 1 1 TOL	8C16					484								
	MINL	(ET94	ER VOL		HCSPH1					RES-									
	CONT				ILITY	CACI				IDUE									
CM	PCT			(MUNS	COLO	-	6/0		_	PC1				CH.		-			
000-25	20	35	5 5	7.5YF	4/2			 4		71	211		92						
C25-34	16		-	7.5Yf	4/3)	-2	1 .30											
034-66	30	1.2	2 1	10 YF	2/:	2 5.9	5 -2	5 .3	6 .21	91	7 246	. 18	2 83	1.2	5				

Soil classification: Terric Medisaprists; sandy or sandy-skeletal, mixed, euic, mesic.

Series: Adrian.

Soil No.: S74WI-55-1.

Location: Jefferson County, Wisconsin; SEs, NWs, sec. 20, T. 6 N., R. 15 E.; 210 feet south from culvert where field lame crosses drainage ditch and 102 feet west from field lane (along drainage ditch). About 43 6' N latitude and 88 37' W longitude.

Humid continental. Mean annual temperature is 47.4° F; mean July temperature is 72.3° F; mean January temperature is 19.8° F; mean annual precipitation is 29.76 inches with nearly two-thirds of the precipitation falling during the growing season; total amount of snow is 32.1 inches; the growing season averages 154 days, but less in organic areas (data from Fort Atkinson, WI, weather bureau substation).

Parent material: Deposits of herbaceous organic material 16 to 50 inches thick over sand. Physiography: Old glacial lake basin.

Vegetation: Corn.

Size of area: About 1,200 acres.

Distance to adjacent mineral soil: About 230 feet to the north.

Depth to water table: 142 cm.

Microrelief: Slight or none.

Subsidence: Estimated to be moderate.

Described and sampled by: G.W. Hudelson and C.L. Glocker. Sampled from pit to 40 inches. Bucket auger used to sample sand.

Oap 74L1474 0 to 25 cm. Black (10YR 2/1) broken face, rubbed, and pressed sapric material; about 20 percent or less fibers; less than 5 percent rubbed; weak fine granular structure; very friable; fibers primarily herbaceous; about 10 percent mineral soil material; many roots; pH 6.0 (LaMotte); abrupt smooth boundary.

Os2 74L1475 25 to 34 cm. Black (10YR 2/1) broken face, rubbed, and pressed sapric material; about 20 percent fibers; less than 5 percent rubbed; weak medium subangular blocky structure; very friable; fibers primarily herbaceous; about 10 percent mineral soil material; many roots; pH 6.0 (LaMotte); abrupt wayy boundary.

34 to 66 cm. Black (N 2/0) broken face, rubbed, and pressed sapric material; about 40-50 percent fibers; less than 5 percent rubbed; weak coarse subangular blocky structure; friable; fibers primarily herbaceous; about 10 percent mineral soil material; few roots; pH 6.4 (LaMotte); abrupt wavy boundary.

66 to 95 cm. Black (N 2/0) broken face, rubbed, and pressed sapric material; about 40 to 50 percent fibers, less than 5 percent rubbed; weak coarse prismatic parting to weak medium sub-angular blocky structure; friable; fibers primarily herbaceous; about 10 percent mineral soil material; few roots; pH 6.6 (LaMotte); gradual wavy boundary.

95 to 150 cm. Grayish brown (10YR 5/2) medium sand; single grained; loose; about 15 percent gravel by volume; pH 7.6 (LaMotte); strong effervescence.

Remarks:

- The 10 cm boundary between mineral and organic horizons contains alternate layers of organic material (sapric) and medium sand. Layers are about 1 cm thick.
- 2. Boundaries between Oa2 and Oa3 and Oa4 are shear planes. Material immediately above is slightly more fibrous and more matted than remainder of horizon.
- 3. IIC horizon contains about 15 percent gravel by volume.

S49V	VI-8	26-1					Beltav	/ille s	Soil S	urvey	Lab. N	ios. I	+9990	-4999	6			, .				
-		ŀ		M.E	./100 G	rams So	i 1	,			o.c.	Size Classes \$										
_	cm	Horizon	Ca	Mg	. к	Na	н	s+	% B. SAT	рĦ		Clay	111	USDA Silt	VFS	PS	MS	cs	VCS			
0-	6	А٦	3.8	0.8	0.3	0.4	14.3	19.6	27	4.1	3.86	8.7	26.8	63.3	10.4	9.4	4.3	2.8	1.1			
6-	17	B21.	1,9	0,7	0.2	0.1	22.7	25.6	n	4.5	2.76	9.9	23.9	61.2	11.0	8.4	4.1	3.4	2.0			
17-	47	B22	0.6	0.2	0.1	<0.1	16.0	16.9	5	5.0	1.61	4,8	23,8	65.4	11.4	8.9	4.6	3.5	1.4			
47-	60	B23x	Ò.2	<0.1	0.2	<0.1	11.8	12.2	. 3	5.2	0.92	5.4	12.7	35.4	15.1	21.0	11.0	8.3	3.8			
60-	75	B24x	0.2	0.1	0.2	<0.1	6.5	7.0	7	5.4	0.42	3.0	10.1	28.1	16.2	25.6	13.1	9.6	4.4			
75-	105	B3x	0,5	0.1	0.1	<0.1	3.2	3.9	18	5.6	0.15	2.5	22.3	29.3	15.1	24.9	12.4	10.0	5,8			
05-1		C1	1.0	0.5	0.2	< 0.1	2.2	3.9	44	5.6	0.11	3.7	11.8	29.3	14.8	24.3	12.7	9.8	5,4			

¹ Acidity 2 CEC by sum of cations 3 International III - This is PSDA fine silt (.02-.002 mm).

Soil classification: Typic Fragiochrept; coarse-loamy, mixed, frigid.

Soil: Abmeek

Soil No.: 849WI-26-1.

Location: Iron County, Wisconsin; SEx, Sec. 6, T. 45 N., R. 1 E.; 60 feet east of State Highway 122, about 2-1/2

miles north of Upson, Wisconsin.

Climate: Continental; air temperature is about 37° to 43° F; average annual precipitation is 25 to 30 inches;

frost-free sesson is 90 to 105 days.

Vegetation and land use: Most of this soil is forested with a cover of trembling aspen, paper birch, maple, balsam fir, and white pine. A small portion is cropped to small grains and hay or is in pasture.

Parent material: Reddish brown sandy loam or fine sandy loam till of the Superior lobe that is late Wisconsin age.

In places a thin loss mentle occurs which rarely exceeds 30 cm.

Physiography: Sloping to hilly upland.

Topography: Near crest of hill. Gradient is 8 percent.

Drainage: Well and moderately well drained.

Ground water: Deep.

Erosion: Slight.

Permeability: Moderately slow.

Described by: J.K. Ableiter, I.J. Nyard, R.J. Muckenhirn, and V.T. Kilmer.

(Colors are for moist conditions unless otherwise stated)

Al 49990 0 to 6 cm (0 to 2.5 inches). Dark reddish gray and dark reddish brown (5YR 4/2 and 3/2) silt loam, pinkish gray (5YR 6/2) dry; moderate coarse to fine granular structure; friable; few pebbles in several spots of concentrated gray (A2) occur in this layer; few earthworms; strongly acid.

B21 49991 6 to 17 cm (2.5 to 7 inches). Reddish brown (5YR 4/4) silt loam, yellowish red (5YR 4/6), light reddish brown (5YR 6/4) dry; moderate coarse granular structure parting to weak fine granules; friable; gray spots and patches occasionally found at top of this horizon; common roots; common pebbles; few earthworms; strongly acid.

B22 49992 17 to 47 cm (7 to 19 inches). Reddish brown (5YR 4/4) silt loam, light brown (7.5YR 6/4) dry; moderate coarse subangular blocky structure parting to weak fine granules; firm; few stones 8 to 12 inches in diameter and many pebbles; medium acid.

B23x 49993 47 to 60 cm (19 to 24 inches). Reddish brown (2.5YR 4/4) loam, reddish brown (5YR 5/3) dry; slight to moderately camented and hardened in place, breaking to irregular fragments; very firm; pebbles and cobblestones of red sandstone and dark basalt rocks, mostly rounded, a few angular; few roots; medium acid.

824x 49994 60 to 75 cm (24 to 30 inches). Reddish brown (5YR 4/4) gravelly loam, light reddish brown (5YR 6/4) dry; moderately cemented and hardened in place, breaking out into moderate resistant irregular angular blocks; very firm; pebbles and cobblestones made up 10 to 20 percent of volume; they are rounded and consist of dark colored rocks and red sandstone; dark rocks include basalt, gneiss and dense hard red rocks; medium acid.

B3x 49995 75 to 105 cm (30 to 42 inches). Reddish brown (5YR 5/3) sandy loam, light reddish brown to pink (5YR 6/3 to 7/3) dry; moderately camented; hard in place; breaks to irregular fragments which crush with moderate to strong resistance when moist; very firm; contains up to 20 percent pebbles and cobblestones with the same lithology as horizon above; medium acid.

Cl 49996 105 to 120 cm (42 to 48 inches). Reddish brown (2.5YR 4/4) loam, light reddish brown to pink (5YR 6/3 to 7/3) dry; massive; friable; contains about 25 percent pebbles, mostly 1 to 3 inches in diameter; medium acid.

SOIL NO - - - - - S75WI-95-7

COUNTY - - - POLK

GENERAL METHODS- - -14,1818,241,28

SAMPLE NOS. 760218-760224

		ZON				FINE	(PARTICI	LE SIZE	ANALY	SIS. L	.T 2MM.	SILT-	3A1A,	3A18 ·		FINE		PARI BB
			SAND	SILT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFNS	COSI	FNSI	VF S I	SAND	11	CLAY	C03~	15
_			2- -05	.05- .002	LT -002	LT .0002	2-	1- .5	. 5- . 25	.10	.10- .05	.02	.02	.002	- 2-	•2- •02	TO CLAY	CLAY	BA TO
CM			(- - - ·				PC!	LT 2M	M				- - -	1			
00-020			72.1	24.3	3.6	1.7	3.3	10.3	21.2	20.4		13.1				38.0	47		1.
20-051	AZ			19.7		1.4	5.9	12.6		23.2		11.6	8.1		62.2 28.8	35.4 63.8	47 57		:
51-081 61-112			68.9 57.6		9.8 13.0	5.6 7.5	1.7 TR	3.2 .8	10.3 3.2	13.6	40.1 46.6	16.5 23.2	4.8 6.2		11.0		58		
12-120			75.5		8.8	4.6	.2	.9	11.5	22.3	40.6	12.5	3.2		34.9		52		
20-143	Cl		54.2	32.5		6.1	-1	.8	1.6	6.6	47-1	26.1	6.4		9-1		54		•
43-154	CZ		95.6	2.9	1.5	1.1	•0	-8	38.6	43.7	12.5	2.7	•2		83.1	30.6	73		•
EPTH	(PARTI	CLE S	IZE AN	ALYSIS	, MM,	38, 38)	, 3B2) (BUI	LK DENS	SITY)	(- WATE	R CO	NTENT-		CARBO	NATE	(PI	H -
	VOL.	(WE	IGHT -			4AlD	4A1H	401	481C	4610	482	4C1 WRD		¢E1B	BALA	8C1A	80
	GT 2	GT 75	75-2	0 20-5	5~ 2	-074	PCT	1/3- BAR	OVEN DRY	COLE	BAR	1/3- BAR	15- Bar	CM/		ŁT 2	.002	H20	Ĉ,
CM	PCT		1	- PCT	LT 75	;		ĕ∕ Ĉ¢			PCT	PCT	PCT	CM		PCT	PCT		
		0	0	 1	1	40	2	1.59	1.62	.006		16.2	4.8	.18				6.1	
20-051		G	o	. 2	-6	31	8	1.74	1.76	. 004		9.1	1.8	.12				6.2	
51- 081		0	0	TR G	TR G	62 81	TR G	1.62	1.67	.010		13.5	4.4 5.8	. 15 .20				5.5	
81-112 12-120		Ö	0	Ö	õ	54	-	1.55A		+013		1040	4.0	*20				5.3	
20-143		ō	ŏ	ō	ŏ	82	Ŏ	1.53	1.60	.015		14.5	5.3	-14				5.1	
43-1 54	0	O	0	0	0	15	O	1.528			4.00		1.0	.05				5.4	
FPTH (ORGANI	C MAT	TER)	IRON	PHOS	(E)	TRACT	ABLE B	ASES SE	14A)	ACTY	AL	ICAT	EXCH)	RATIO	RATIO	CA	(BAS)	E S
., .,, .	6A1A			6C28		6NZE	6020	6P2B	6QZB		AIH6	6G1E	5A3A	5A 6A	8D 1	803	5F1	5C 3	5
	ORGN	NITE		EXT	TOTL	CA	MG	NA	ĸ	SUM		KCL	EXT B	NHAC			SAT	EXTB	N
~ 4	CARB	or =		FE	DCT	(EXT8	TEA	EXT -	ACTY		TO CLAY	T D MG	NHAC PC T	ACTY PCT	ρ
CM	PCT	PCT								·									
0-020 20-051		.10	6 12 7 8			4.9 2.4	1.6	TR .0	·l TR	6.6 3.1	3.7 2.3		10.3 5.4	7.2 3.4	2.00	3.4	68 71	64 57	
51-081	.13	. GZ	ġ ř			4.9	1-4	.i	. 1	6.5	3.6		10.1	6.9	. 70	3.5	71	64	
81-112						5.3	1.9	.1		7.4	4.8	-2	12.2	9.1	.70	2.8	58	61	
12-120						3.7 4.6	1.4	TR TR	.1 .1	5.2 6.5	3.4 4.2	. 3 .4	8.6 10.7	6.8 8.5	.77	2.6 2.6	54 54	60 61	
20-143 43-154						1.2	-4	ÝŔ		1.6	1.5	.1	3.1	2.1			57	52	
	~																	ATT 601	
EPTH	SATUR 8E1		PASTE)	NA SD2	NA 5E	SALT 8D5	GYP 6Fla			601B						6L1A		4F1	
	REST	PH	H20	ÉSP	SAR	TOTL	·	EĊ	CA	MG	NA	K	C03	HC03	CL	504	NO3	LQID	
	OHM-					SOLU		MMHOS/						-				TIMA	IN
CM	CH		PCT	PCT			PCT		·			- MEG /	CITE					PL 1	
00-020 20-051																			
51 -0 81	•																	220	
	08100	5.2	37.3					.14								. 6			
12-120																		250	
20-143																			

⁽A) ESTIMATED.

(B) CORE SAMPLE, METHOD 4A3A.

(C) STEVED SAMPLE, METHOD 4B1A.

(D) LIQUID LIMIT AND PLASTIC INDEX BY USDA-SCS, SOIL MECHANICS LAB, LINCOLN, NE.

Soil classification: Glossic Eutroboralf; coarse-loamy, mixed.

Soil: Alban taxadjunct*.

Soil No.: \$75WI-95-7.

Location: Polk County, Wisconsin; SE4, Sec. 35, T. 34 N., R. 15 E; 100 feet east of driveway to the ball park.

About 45°24' N latitude and 92°11' W longitude.

Climate: Humid continental; mean annual temperature is 43° F; mean July temperature is 71° F; mean January temperature is 11.8° F; mean annual precipitation is 27.5 inches with about two-thirds of this occurr.

F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days.

(Data from Amery, WI, weather bureau substation).

Vegetation and use: Native vegetation was primarily mixed northern hardwoods with some conifers. Most large areas of this soil have been cleared and are used for general farming. This site was in alfalfa hay meadow when sampled.

Parent material: Loamy slack water deposits.

Physiography: Nearly level to sloping glacial lake hasing.

Topography: Nearly level; site sampled was on a 1 percent convex slope.

Drainage: Moderately well and well drained.

Ground water: At 4 feet in July and 5 feet in October.

Brosion: Slight.

Permeability: Moderate.

Described by: A.J. Klingelhoets and G.B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

760218 0 to 20 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) fine sandy loam; weak medium subangular Ap 760218 0 to 20 cm (0 to 8 inches). Very dark grayish brown (1018 3/2/ 1146 squay room, were modern blocky structure parting to moderate medium granular; very friable; many roots; slightly acid; abrupt smooth bound-

760219 20 to 51 cm (8 to 20 inches). Brown (10YR 5/3) sandy loam; weak coarse platy structure; very friable; many roots; slightly acid; clear wavy boundary.

51 to 81 cm (20 to 32 inches). Grayish brown (10YR 5/2) loamy very fine sand (A2); weak coarse platy structure; friable; occupies about 60 percent of the horizon as tongues 20 to 40 mm thick extending into or completely surrounding isolated remnants of dark brown (7.5YR 4/4) very fine sandy loam (B2t); weak medium subangular blocky structure; friable; few patchy thin clay films on some faces of peds (B2t); strong brown (7.5YR 5/6) iron stains occur along edges of A2 tongues; many roots; slightly acid; gradual irregular boundary.

B&A 760221 81 to 112 cm (32 to 44 inches). Dark brown (7.5YR 4/4) very fine sandy loam (B2t); weak medium subangular blocky structure; friable; occupies about 80 percent of the horizon; few thin patchy clay films on faces of peds (B2t); tongues 10 to 30 mm thick of grayish brown (10YR 5/2) fine sandy loam (A2) extend to bottom of horizon; weak coarse platy structure; friable; many roots; slightly acid; clear wavy boundary.

B3 760222 112 to 120 cm (44 to 47 inches). Dark brown (7.5YR 4/4) fine sandy loam; weak coarse platy structure parting to weak medium subangular blocky; very friable; few alfalfa roots; slightly acid; clear wavy boundary.

C1 760223 120 to 143 cm (47 to 56 inches). Brown (7.5YR 5/4) fine sandy loam; weak coarse platy structure; very friable; weakly stratified; few alfalfa roots; slightly acid; clear wavy boundary.

c2 760224 143 to 154 cm (56 to 60 inches). Strong brown (7.5YR 5/6) fine and medium sand; single grained; loose; weakly stratified; few thin (1 to 3 cm) dark brown (7.5YR 4/4) loamy fine sand bands; few alfalfa roots; medium acid.

* This pedon is a taxadjunct because the base saturation is too high for the Alban series.

Additional Notes:

ph's in field determined by Truog Kit

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S75WI-95-1 COUNTY - - - POLK

GENERAL METHODS- - -14,1818,241.28 SAMPLE NOS. 760169-760177

205- LT. LT 2- 1- 5251005 .02 .002 .005 22 - TO CLAY CB		·								LE NOS.										
SAND SILT CLAY CLAY CLAY	DEPTH	HORIZO	IN	(PART IC	LE SIZE	E ANAL	YSIS, L	T 2MM	, 3A1,	3A1A,	3A18 -				
205- LT LT 2- 15251005 .02 .002 .002 -10 .02 .10																				
CAN										WEDS	PNES	VENS	COST	FNSI	VFSI	SAND	11			15
CON CO-028 AP 53.3 38.9 7.8 2.6 3.2 7.7 10.9 17.6 13.7 20.3 18.6 39.6 43.1 33.2 28-041 AZ 57.1 32.7 10.2 3.4 4.2 9.7 12.2 18.7 12.3 16.1 16.6 44.8 37.9 33 41.002 AKS 60.3 21.9 17.8 8.7 4.2 9.7 13.6 20.9 11.6 9.6 12.1 44.8 37.9 33 41.002 AKS 60.3 21.9 17.8 8.7 43.9 7.7 13.6 20.9 11.6 9.6 12.1 44.8 37.9 33 41.002 AKS 60.3 21.9 17.8 8.7 43.9 7.7 13.6 20.9 11.6 9.8 12.1 47.9 30.7 47.9 30									1-	- 5-	+ 45-	.10-	.05	- 02	-005	. 2-	•2~		CLAY	
00-028 AP	CM			(. 002					.25 + - PC1	1 LT 2	.U5 MM ~ ~	- 02	-002		7 -10			PCT	CLA
28-041 A2 57.1 32.7 10.2 3.4 4.2 9.7 12.2 18.7 12.3 16.1 16.6 44.8 37.9 33 11.032 A85 00.3 21.0 17.6 8.7 4.3 9.7 13.8 20.9 11.6 9.8 12.1 49.7 31.9 40.7 31.9									~~~~											
***SECRET CONTROL TRANSPORT OF THE PROPERTY OF																39.6	43.1	33		•
12-074 B6A 56.7 22.4 18.9 8.8 3.7 10.1 13.8 20.3 10.8 9.7 12.7 47.9 30.7 47 74-7060 88A 56.4 27.1 10.5 9.2 4.2 8.7 12.3 19.9 11.3 11.1 13.0 45.1 32.5 47 86-114 827 56.8 23.6 19.6 9.2 4.1 9.1 12.8 19.6 11.0 9.1 13.1 13.0 45.1 32.5 47 86-114 827 56.8 23.6 19.6 9.2 4.1 9.1 12.8 19.6 11.0 9.1 13.1 13.0 45.1 23.9 47 86-114 827 56.8 23.6 19.6 9.2 4.1 9.1 12.8 19.6 11.0 9.1 13.0 45.1 23.9 47 86-114 827 56.8 23.6 19.6 9.2 4.1 9.1 12.8 19.6 11.0 9.1 13.0 45.1 23.9 47 86-114 827 56.8 23.6 19.6 9.2 4.1 9.1 12.8 19.6 11.0 9.1 13.0 45.1 23.9 47 86-114 827 56.8 23.6 19.6 11.0 9.1 13.0 45.1 13.0 45.1 23.9 47 86-114 827 86.8 18.9 46.7 31.5 30 83-118 C2 58.7 27.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 83-118 C2 58.7 27.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 83-118 C2 75 67 67 67 67 67 67 67 67 67 67 67 67 67																44.8	37.9	33		•
74-006 BEA 56.4 2-1, 19.5 9.2 4.2 8.7 12.3 19.9 11.3 11.1 13.0 45.1 32.5 47 80-114 BET 56.8 22.6 19.6 9.2 4.1 9.1 12.8 19.8 11.0 9.1 14.5 45.8 29.9 47 14-131 B3 53.9 27.2 18.9 9.0 3.7 8.5 12.3 18.6 10.8 13.4 13.8 43.1 33.6 48 13.6 9.2 17.7 72.5 4.0 15.5 13.2 19.5 11.1 9.6 13.9 46.7 31.5 33.6 48 13.6 9.2 17.7 72.5 4.0 15.5 13.2 19.5 11.1 9.6 13.9 46.7 31.5 33.6 48 13.6 9.2 17.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 35.6 48 13.6 9.2 17.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 35.6 48 13.6 9.2 17.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 12.5 17.7 12.5 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 12.5 17.7 12.5 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 12.5 17.7 12.5 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 12.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17																				
31-163 C1 59.6 23.2 17.0 7.2 5.4 10.5 13.3 19.5 11.1 9.6 18.6 48.7 30.6 42 55-178 C2 58.7 27.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 EPTH (PARTICLE SIZE ANALYSIS, MH, 38, 381, 382)(BULK DERSITY) (MATER CONTENT) CARBONATE (PH VOL. (10.1	13.8		10.8	9.7	12.7		47.9	30.7	•7		. •
33-163 C1 59.6 23.2 17.0 7.2 5.4 10.5 13.3 19.5 11.1 9.6 18.6 48.7 30.6 42 55-178 C2 58.7 27.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 EPTH (PARTICLE SIZE ANALYSIS, MH, 38, 381, 382)(BULK DENSITY) (MATER CONTENT) CARBONATE (PH VOL. (11.3	11.1	13.0		45.1	32.5	47		
33-163 C1 59.6 23.2 17.0 7.2 5.4 10.5 13.3 19.5 11.1 9.6 18.6 48.7 30.6 42 55-178 C2 58.7 27.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 EPTH (PARTICLE SIZE ANALYSIS, MH, 38, 381, 382)(BULK DENSITY) (MATER CONTENT) CARBONATE (PH VOL. (11.0	9.1	14.5						•
63-178 C2 58.7 27.7 13.6 4.1 4.0 9.4 12.2 21.1 12.0 8.8 18.9 46.7 31.5 30 EPTH (PARTICLE SIZE ANALYSIS, MH, 3B, 3B1, 3B2); BULK DENSITY)(WATER CONTENT) CARBONATE (PH C7												10.8	13.4	13.8						•
PPH (PARTICLE SIZE ANALYSIS, MM, 3B, 3B1, 382) (BULK DENSITY) (MATER CONTENT) CARBONATE (PH VOL, 17WEIGHT) 4A1D 4A1H 4D1. 4B1C 4B2 4C1 6E1B 3A1A BC1A CT																				•
PFH (PARTICLE SIZE ANALYSIS, MM, 30, 381, 382) (BULK DENSITY) (MITER CONTENT) CARDONATE (PH VOL. (53-178	CZ		58.7	27.7	13.6	4.1	4.0	9.4	12.2	21.1	12.0	8.8	18.9		46.7	31.5	30		•
VOL. (
GT GT 75-20 20-5 5-2 LT 20-2 LT3 OVEN COLE 1/10 1/3 15- MR0 LT LT 1/1 LT 20 2 LT 20 2 H20 LT 20-2 LT3 OFT BAR DAY BAR	EPTH (PARTICL	£ \$1	ZE ANA	LYSIS	, MM, Tgut -	38, 381	, 382) (BU	LK DENS	SITY AD1.	} { } { AB1€	WAT!	ER COI	NT ENT -) CARBI	DNATE	(P)	1 -
2 75								20-2	1/2-								17	7040	1/1	1/
CM PCT PCT (PCT T75) LT20 G/CC G/CC PCT PCT PCT PCT PCT PCT PCT PCT PCT P		2 7	76				074	PCT	RAR	ORY					CH/		5	.002	ม้วก	Ĉ/
10-028 TR C TR 1 1 54 2 1.60 1.666 .013 19.5 6.0 .22 6.4 18-041 3 0 0 2 4 47 6 1.600 4 4.9 6.7 18-041 3 0 0 2 4 47 6 1.600 16.5 9.0 .11 6.5 9.0 .11 6.4 18-041 3 0 0 7	:M	PCT P	CT.)	LT20	G/CC	G/CC	1	PCT	PCT	PCT			PCT	PCT		Ψ.
									1.60								~			
11-052 5																				
											.029		16.5		-11					
74-096 5 0 TR 2 5 46 7 1.60A 6-116 5 0 TR 2 4 46 6 1.64 1.77 .024 19.0 10.2 .14 5.8 6-116 5 0 TR 3 4 48 7 1.61 1.69 .016 17.8 10.0 .12 6-0 11-163 5 0 TR 3 7 43 10 1.65A PTH (ORGANIC MATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (6.6) 3-178 5 0 TR 3 7 43 10 1.65A PTH (ORGANIC MATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (6.6) 6-13-178 5 0 TR 3 7 43 10 1.65A PTH (ORGANIC MATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (6.6) ORGEN NITG EXIT TOTL CA MC NA K SUM BACL KCL EXTB NMAC 801 803 5F1 5C3 ORGEN NITG FET PCT PCT (Ô	TR				7	1.63	1.72	-021									į
10-14 3 0 1R 2 4 48 0 1.61 1.09 186 17.8 10.0 1.12 5.0 11-163 5 0 TR 2 7 42 9 1.64 1.69 .010 17.4 9.1 .13 6.0 11-163 5 0 TR 2 7 42 9 1.64 1.69 .010 17.4 9.1 .13 6.6 PTH (DRGANIC MATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA IBASE ORGH NITG EXT TOTL CA MG NA K SUM BACL KCL EXTB NHAC MHAC CA SAT EXTB CAMP PCT PCT PCT PCT PCT (ĕ	TR	5	5	46	י ל	1.604					10.1						
4-131 5 0 TR 2 7 42 9 1.64 1.69 .010 17.4 9.1 .13 .8 6.6 3-178 5 0 TR 2 7 42 9 1.64 1.69 .010 17.4 9.1 .13 .8 6.6 3-178 5 0 TR 2 7 43 10 1.656			ň	TO	5	ĩ	46						19.0	10.2	. 14					
11-63 5 0 TR 2 7 42 9 1.64 1.69 .010 17.4 9.1 .13 6.6 3-178 5 0 TR 3 7 43 10 1.65A 6.8 8 7.7 7 FTH (DRGANIC NATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE 6A1A 681A C/N 6228 6026 6026 6028 6028 601A 6615 5034 56A6 8011 803 571 553 0RGN NITG EXT TOIL CA MG NA K SUM BACL KCL EXTB NHAC MHAC CA SAT EXTB CARB FE EXT TOIL CA MG NA K SUM BACL KCL EXTB NHAC MHAC CA SAT EXTB CAMB FE EXT TOIL CA MG NA K SUM BACL KCL EXTB NHAC MHAC CA SAT EXTB CAMB 18.028 6 5.1 1.6 TR 1. 6.8 2.8 9.6 7.0 .69 3.2 73 71 10-028 1.34 .128 10 8.39 .1 1.6 TR 1. 6.8 2.8 9.6 7.0 .69 3.2 73 71 11-052 .12 .024 5 9.1 3.9 .1 1.3 13.4 3.7 17.1 13.7 .77 2.3 66 78 12-074 .12 08 8 4.1 1. 3 13.3 3.4 16.7 13.7 .77 2.3 66 78 12-074 .12 08 8 4.1 1. 3 13.3 3.4 16.7 13.7 .77 2.1 46 80 4-131 .08 9.2 4.9 1. 34 14.5 3.7 17.1 13.7 7.7 1.9 60 77 16-114 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 9.2 4.9 1. 3 14.5 3.7 18.2 15.5 .79 1.9 59 80 14-131 .08 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.		ř.	ă		•	7							17.8	10.0	.12					
13-178 5 0 TR 3 7 43 10 1.65A 6.8 8 7.7 PTH (ORGANIC NATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE 6A1A 6B1A C/N 6C28 6H2E 6020 6P28 6628 6H1A 6G1E 5A3A 5A6A 8D1 B03 5F1 5C3 ORGAN NITC EXT TOTL CA MG NA K SUM BACL KCL EXTR NHAC NHAC CA SAT EXTB CARB FE EXT TOTL CA MG NA K SUM BACL KCL EXTR NHAC NHAC CA SAT EXTB CARB FE EXT TOTL CA MG NA K SUM BACL KCL EXTR NHAC NHAC CA SAT EXTB CARB FE EXT ACTY TO TO NHAC ACTY TO TO TO TO TO NHAC ACTY TO TO TO TO NHAC ACTY TO TO TO TO NHAC ACTY TO NHAC ACTY TO		_																		
PTH (ORGANIC NATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIC RATIC CA (BASE 581A 681A 681A 681A 678 6828 6N2E 6020 6P2B 6028 6H1A 6G1E 5A3A 5A6A 8D1 8D3 5F1 5G3 0R6N NITG EXT TOYL CA MG NA K SUM BACL KCL EXTB NHAC NHAC CA SAT EXTB CARB PE PCT											. 010		2114	A . A						
PTH (GRGANIC MATTER) IRON PHOS (EXTRACTABLE BASES 586AA -) ACTY AL (CAT EXCM) RATIC RATIO CA (BASE GAIA 681A C/N 6628 GOZO 6728 GOZO	J-110	.		115	-	•			****					•••			•		•••	
6AlA 6BlA C/N 6C2B 6N2E 602D 6P2B 602B 6H1A 6G1E 5A3A 5A6A 8D1 8D3 5F1 5G3 ORBM NITG EXT TOTL CA MG NA K SUM BACL KCL EXTB NHAC NHAC CA SAT EXTB CARB FE FE FOR PCT	074 /C	BOCANIC	M A 77	reo \																
OREN NITC EXT TOTL CA MG NA K SUM BACL KCL EXTB NHAC CA SAT EXTB CARB FE CM PCT PCT PCT PCT (MEQ / 100 G						rnus														. <i>5</i> ,
CARB FE PCT PCT PCT PCT (•••		TOTA				K	SUM									NI
CM PCT PCT PCT PCT (EXTS	TEA	EXT	ACTY		TO				
0-028 1.34 .128 10			CT		PCT					MEG	7 / 10	G			1	CLAY	MG	PCT	PCT	P
8-041 .18 .028 6 5.1 1.6 TR .1 6.8 2.8 9.6 7.0 .69 3.2 73 71 1-052 .12 .024 5 9.1 3.9 .1 .3 13.4 3.7 17.1 13.7 .77 2.3 66 78 2-074 .12 8.8 4.1 .1 .3 13.3 3.4 16.7 13.7 .77 2.3 66 78 2-076 .04 9.1 4.7 .1 .3 14.2 4.2 18.4 15.1 .77 1.9 60 77 4-096 .04 9.1 4.7 .1 .3 14.5 3.7 18.2 15.5 .79 1.9 59 80 4-131 .08 9.2 4.9 .1 .3 14.5 3.7 18.2 15.5 .79 1.9 59 80 4-131 .08 9.2 4.8 .1 .3 14.4 3.1 17.5 14.9 .79 1.9 62 82 11-163 .06 3.6 .1 .2 9.6 .71 PTH (SATURATED PASTE) NA NA SALT GYP (0-028	1.34	. 126						TR		9.4	3.7		13.1	9.5	1,22	4. 1	78	72	
12-052 .12 .024 5 9.1 3.9 .1 .3 13.4 3.7 17.1 13.7 .77 2.3 66 78 22-074 .12 8.8 4-1 .1 .3 13.3 3.4 16.7 13.7 7.7 2.3 66 78 4.096 .04 9.1 4.7 .1 .3 14.2 4.2 18.4 15.1 .77 1.9 60 77 16-114 .08 9.2 4.9 .1 .3 14.5 3.7 18.2 15.5 .79 1.9 59 80 17.1 16.3 10.6 9.2 4.8 .1 .3 14.5 3.7 18.2 15.5 .79 1.9 59 80 17.1 16.3 .06 9.2 4.8 .1 .3 14.4 3.1 17.5 14.9 .79 1.9 62 82 17.1 16.3 .06 4.7 .1 .2 1.8 14.2 84 17.3 18.2 18.4 18.4 18.4 18.4 18.3 17.5 14.9 .79 1.9 62 82 18.3 18.4 18.3 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4										- 1	6.8	2_8		9.6					71	
PTH (SATURATED PASTE) NA NA SALT GYP (.1	.3	13-4	3.7		17.1		. 77	2.3			
PTH (SATURATED PASTE) NA NA SALT GYP (- 1	. 3	13.3	3.4		16.7		-72				
PTH (SATURATED PASTE) NA NA SALT GYP (.1	. 3	14.2	4.2		18.4		. 77				
PTH (SATURATED PASTE) NA NA SALT GYP (-1	. 3	14.5	3.7		18.2						
PTH (SATURATED PASTE) NA NA SALT GYP (. 3	14.4	3.1		17.5						
PTH (SATURATED PASTE) NA NA SALT GYP (,			. 2	_,,,,	1.8		-,,,			•••	~-	-	
PTH (SATURATED PASTE) NA NA SALT GYP (SATURATION EXTRACT 8A1) ATTERBE 8E1 8C1B 8A 502 5E 8D5 6F1A 8A1A 6N1B 601B 6P1B 601B 611A 6J1A 6K1A 6L1A 6M1A 4F1 4 REST PH H20 ESP SAR TOTL CM CM PCT PCT PPM PCT CM (MEQ / LITER) PCT 10-028 18-041 1-052 2-074 4-096 6-114 3600 5.2 35.4 .17 .13 1-163 3-176 AY MINERALOGY (TAZC). 41-52 MT5 KK2 M12 VR1										.2		•••								
PTH (SATURATED PASTE) NA NA SALT GYP (•••																		
8E1 8C1B 8A 5D2 5E 8D5 6F1A 8A1A 6N1B 601B 6P1B 6Q1B 6I1A 6J1A 6K1A 6L1A 6M1A 4F1 4 REST PH H2D ESP SAR TOTL EC CA MG NA K CO3 HCO3 CL SO4 NO3 LQID P OHM- CM CM PCT PCT PPM PCT CM (MEQ / LITER) PCT 0-028 8-041 1-052 2-074 4-096 6-114 3600 5-2 35.4 .17				PASTEN	MA.		SALT	CYP										}	ATTER	BER
REST PH H20 ESP SAR TOTL EC CA MG NA K C03 HC03 CL S04 N03 LQ10 P OHM— SQLU MMHOS/ LMIT I CM CM PCT PCT PPM PCT CM (MEQ/LITER) PCT 100-028 8-041 1-052 12-074 4-096 16-114 3600 5.2 35.4 .17 .13 1-163 13-178 298																				
OHM- CM PCT PCT PPM PCT CM (MEQ / LITER) PCT 10-028 18-041 1-052 12-074 4-096 16-114 3600 5.2 35.4 .17 .1 .3 4-131 1-163 33-178 AY MINERALOGY (7A2C). 41-52 MT5 KK2 MI2 VR1																				
CM CM PCT PCT PPM PCT CM (MEQ / LITER) PCT 0-028 8-041 1-052 2-074 4-096 6-114 3600 5-2 35-4 1-163 3-176 AY MINERALOGY (7A2C). 41-52 NT5 KK2 MI2 VR1			••							•										
0-028 8-041 1-052 2-074 4-096 6-114 3600 5-2 35.4 .17 1.3 4-131 1-163 3-176 AY MINERALDGY (7A2C).				PCT	PCT	•				(·		MEQ /	LITE						
8-041 1-052 2-074 4-096 6-114 3600 5.2 35.4 1.7 1.3 4-131 1-163 3-176 AY MINERALOGY (7A2C). 41-52 NT5 KK2 MI2 VR1		~_																		
1-052 2-074 4-096 6-114 3600 \$.2 35.4 4-131 1-163 3-178 AY MINERALOGY (TA2C). 41-52 NT5 KK2 MI2 VR1																				
2-074 4-096 6-114 3600 5.2 35.4 .17 l.3 4-131 1-163 298 3-176 AY MINERALOGY (TAZC). 41-52 NT5 KK2 MI2 VR1																				
4-096 6-114 3600 \$.2 35.4 .17 1.3 4-131 1-163 298 3-178 AY MINERALOGY (7A2C). 41-52 NT5 KK2 MI2 VR1																			31A	1
16-114 3600 S.2 35.4 .17 l.3 4-131 13-163 3-178 AY MINERALOGY (TA2C). 41-52 NT5 KK2 MI2 VR1																				-
4-131 1-163 3-178 AY MINERALOGY (7A2C). 41-52 NT5 KK2 MI2 VR1		3600	5. 2	35.4					.17								1.3			
12-163 13-178 AY MINERALOGY (7A2C). 41-52 MT5 KK2 MI2 VR1		2000		-307																
3-178 AY MINERALDGY (7A2C). 41-52 NT5 KK2 MI2 VR1																			298	1.
AY MINERALOGY (TAZC). 41-52 NT5 KK2 MI2 VR1																				_
96-114 MT5 KK2 MII VRI 96-114 MT5 KK2 MII VRI RELATIVE AMOUNTS: (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE. MINERAL CODE: MT = MONTMORILLONITE M1 = MICA KK = KAGLINITE VR = VERMICULITE.	LAY MIN 41-52 52-74 96-11 RELATI	2 MT5 4 MT5 L4 MT5 [VE AMOU	KI KI KI MTS:	(2 MI2 (2 MI2 (2 MI1 (2 MI1	VRI VRI AY)						- MODE	RATE 2	: = SM		= TRA(::				

ĸ

HN.

074-96 VFNS - RE75 QZ73 FE2 TM FD22 HN1 GN1 MS1 AU. FNES ~ RE75 QZ66 FE9 FD15 HN6 GNZ MS2.

RELATIVE AMOUNTS: AS PERCENT.

MINERAL CODE: CL = CHLORITE FD = FELDSPARS HN = HORNBLENCE MS = MUSCOVITE QZ = QUARTZ TM = TOURMALINE

ZR = ZIRCON RE = RESISTANT MINERALS GN = GARNET TE = TREMOLITE VR = VERMICULITE AU = AUGITE

FE = IRON MINERALS SP = SPHENE GS = GLASS TP = TOPAZ.

⁽A) ESTIMATED.

(B) LIQUID LIMIT AND PLASTIC INDEX BY USDA-SCS, SOIL MECHANICS LAB. LINCOLN. NE.

Soil classification: Aquic Argiboroll; fine-loamy, mixed.

Series: Alstad taxadjunct*.

Soll No.: S75WI-95-1.

Location: Polk County, Wisconsin; NWk, Sec. 25, T. 36 N., R. 16 W.; 120 feet east of road and 200 feet south of large drain. About 45°35' N latitude and 92° 40' W longitude.

Climate: Humid continental. Mean annual temperature is 43° F; mean July temperature is 71° F; mean January temperature is 11.80 F; mean annual precipitation is 27.65 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days. (Data from Amery, WI., weather busreau substation.)

Vegetation and use: Native vegetation was mixed stands of northern hardwoods and conifer forests. Much of this land has been cleared and presently is used for general farming. Present crop is clover hay.

Parent material: Loamy glacial till.

Physiography: Nearly level to gently sloping glacial ground moraine.
Topography: Nearly level with sample site on a 1 percent concave slope.

Drainage: Somewhat poorly drained.

Ground water: 28 inches in July; over 5 feet in September when sampled.

Erosion: Slightly eroded.

Permeability: Moderately slow.

Described by: A.J. Klingelhoets and G.B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

Ap 760169 0 to 28 cm (0 to 11 inches). Very dark grayish brown (10YR 3/2) loam; moderate fine subangular blocky structure parting to moderate medium granular; friable; many roots; neutral; abrupt wavy boundary.

A2 760170 28 to 41 cm (11 to 16 inches). Brown (10YR 5/3) light loam; many medium distinct and prominent yellowish brown and grayish brown (10YR 5/6 and 5/2) mottles; moderate medium and coarse platy structure; frisble; many roots; neutral; gradual wavy boundary.

A&B 760171 41 to 52 cm (16 to 20 inches). Brown (7.5YR 5/2) light loam (A2); weak coarse platy structure; friable; occupies about 60 percent of the horizon as tongues extending into or completely surrounding isolated remnants of dark brown (7.5YR 4/4) loam (B2t); moderate medium subangular blocky structure; firm; few thin patchy clay films on faces of peds (B2r); estimated less than 5 percent by volume coarse fragments greater than 2 mm in diameter and less than 1 percent greater than 3 inches in diameter; many roots; neutral; gradual irregular boundary.

B&A 760172 52 to 74 cm (20 to 29 inches). Dark brown (7.5YR 4/4) clay loam (B2t); many medium distinct and prominent strong brown (7.5YR 5/6 and 5/8), yellowish red (5YR 5/6) and grayish brown (10YR 5/2) mottles; moderate medium subangular blocky structure; firm; thin patchy clay films on faces of peds; few manganese spots and streaks; tongues up to 40 mm thick of brown (7.5 % 8/2) loam extend to bottom of horizon; weak coarse platy structure; friable; estimated less than 5 percent by volume coarse fragments greater than 2 mm in diameter and less than 1 percent over 3 inches in diameter; many roots; slightly acid; clear wavy boundary.

REA 760173 74 to 96 cm (29 to 38 inches). Dark brown (7.5YR 4/4) clay loam (82t); many medium distinct and prominent strong brown (7.5YR 5/6 and 5/8), yellowish red (5YR 5/6), and grayish brown (10YR 5/2) mottles; moderate medium subangular blocky structure; firm; thin patchy clay films on faces of peds; few manganese spots and streaks; tongues up to 40 mm thick of brown (7.5YR 5/2) loam extend to bottom of horizon; weak coarse platy structure; friable; estimated less than 5 percent by volume coarse fragments greater than 2mm in diameter and less than 1 percent over 3 inches in diameter; many roots; slightly acid; clear wavy boundary. (Separated on depth for analysis only.)

B2t 760174 96 to 114 cm (38 to 45 inches). Dark brown (7.5YR 4/4) light clay loam; many medium prominent and distinct grayish brown (10YR 5/2) and reddish brown and yellowish red (5YR 4/4 and 5/6) mottles; moderate medium subangular blocky structure; firm; thin patchy clay films on faces of peds; a few spots and streaks of manganese; estimated less than 5 percent coarse fragments greater than 2 mm in diameter; many roots; slightly acid; gradual wavy boundary.

B3 760175 114 to 131 cm (45 to 51 inches). Dark brown (7.5YR 4/4) losm; many coarse distinct yellowish red and grayish brown (5YR 5/6 and 10YR 5/2) mottles; few thin patchy clay flows on vertical faces of peds and structural cracks; many fine manganese spots and streaks; estimated less than 5 percent coarse fragments over 2 mm in diameter; few roots; medium acid; gradual wavy boundary.

131 to 163 cm (51 to 64 inches). Brown (7.5YR 5/4) loam; many medium distinct grayish brown and strong brown (10YR 5/2 and 7.5YR 5/6) mottles; weak coarse subengular blocky structure; friable; estimated less than 5 percent by volume of coarse fragments over 2 mm in diameter; mildly alkaline.

* This pedon is a taxadjunct to the Alstad series because it has a thick, dark surface that forms a mollic epipedon.

Additional notes:

- 1. Soil temperature was 14°C at 20 inches in July
- 2. pH's in field determined by Truog Kit
- 3. Sample of 163-178 cm material which is similar to Cl horizon material was assigned map number 760177

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - STOWIS-71-2

COUNTY - - - WOOD

GENERAL METHODS- - -14,1818,241,28

SAMPLE NOS. 701924-701934

DEPTH	HORIZ	DN.	SAND 2- .05	SILT .05-	CLAY LT .002	FINE CLAY LT .0002		CORS	LE SIZE SAND - MEDS .5- .25	FNES .25-	VFNS .10-	11		VFSI		INTR 11 .2- .02	FINE CLAY TO CLAY PCT	NON- CO3- CLAY	RATIO 801 15- 84R TO CLAY
000-21 021-30 030-43 043-58 058-72 072-96 096-125 125-158 158-191 191-234 234-279	283T 201 202		4.4 5.8 4.2 17.2 35.9 21.9 17.3 17.7 39.7 60.7 47.9	78.6 68.7 66.2 53.2 29.8 30.5 30.4 30.8 34.1 23.1	17.0 25.5 29.6 29.6 34.3 47.6 52.3 51.5 26.2 15.3	6.5 10.5 14.4 15.3 22.2 32.8 33.7 37.3 15.5 6.0	.2 .2 TR .8 1.2 .7 .6 .9 4.4	.6 .8 4.4 10.9 5.0 3.2 2.2 8.2	.7 .8 5.0 11.5 5.4 3.8 5.8 11.1	3.9 8.7 6.2 5.8 11.9 17.6	2.3 3.2 2.8 3.1 3.6 4.6 5.0 9.4 9.7	34.3 34.9 32.9 27.8 14.1 13.3 13.4 12.4 14.3 10.4	44.3 33.8 33.3 25.4 15.7 17.2 17.0 18.4 19.8 12.7	7.9 6.6 6.0 4.4 5.7 6.6 4.9 3.7	2.1 2.6 1.4 14.1 32.3 17.3 12.3 11.7 30.3 51.0 33.0	36.8 38.4 35.9 32.2 20.6 20.8 21.2 21.7 30.4 29.4	38 41 49 55 65 64 72 59 37		.50 .46 .46 .45 .45 .53 .59
СМ	(PARTIC VOL. (ST 2 PCT			- WE J	5-2	LT .074	20-2 PCT			4D1	48 IC 1/10 BAR PCT	WATE 4B1C 1/3- BAR PCT	R CO: 482 15- 8AR PCT	NTENT- 4C1 WRD CM/ CM)	CARBO 6E1B LT 2 PCT	NATE 3A1A LT .OG2 PCT	8C1A 1/1 H2O	8C1E 1/2 CACL
000-21 021-30 030-43 043-58 058-72 072-96 125-158 158-191 191-234 234-279	TR TR	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	TR TR TR TR TR TR O O O TR	TR TR TR TR TR TR TR TR TR	97 97 98 85 66 81 86 65 44	TR TR TR I TR TR TR TR TR TR	1.36 1.48 1.50A 1.49 1.49 1.51 1.45 1.50A	1.43 1.59 1.74 2.02 1.99 1.95	.017 .025 .054 .106 .099 .106	30.6 26.4 25.5 29.8 35.9	29.5 24.3 23.6 28.0 27.1 30.0 33.7	8.5 12.2 13.6 14.2 15.9 21.3 23.0 23.1 13.9 9.5	.29 .18 .14 .18 .09 .10	4.3B 3.08 3.08 2.5B 1.78 1.18			6.5 5.1 4.4 4.5 5.2 6.5 7.0 6.9 5.7	6.0 4.3 3.4 3.9 4.6 5.9 6.3 6.4 6.0 5.2
DEPTH (ORGANIC 6414			1RON 6028	PHOS		TRACT/		ASES 51 6Q28	14A~ -	ACTY 6H1A	AL 6G1E	(CAT SA 34	EXCH) 5A6A	RATIO 8D1	RATIO 803	CA 5F1	(BA SE 5C 3	SAT) SC1

CM	CARB PCT	PCT		FE PCT	PCT	(MEC	EXTB			ACTY		TO CLAY	TO MG	NHAC PCT	ACTY PCT	PCT
000-21 021-30 030-43 043-58 058-72 072-96 096-125 125-158	0.07	.16 .06 .04	4 8 7 7	1.3		13.1 8.6 8.5 9.2 10.1 10.2 14.3 13.2	2.2 4.4 5.8 7.6 8.1 13.3 11.7	0.2 0.3 0.2 0.2 0.4 0.4	0.4 0.4 0.5 0.6 0.6	15.7 13.6 15.0 17.5 19.0 24.5 27.3 25.7	4.1 6.8 11.9 9.4 5.8 3.7 3.3 2.9	0.9 2.9 1.9 0.7	19.8 20.4 26.9 26.9 24.8 28.2 30.6 28.6	16.4 18.0 22.0 22.8 21.8 24.4 26.5 25.6	0.96 0.71 0.74 0.77 0.64 0.51 0.51 0.50	6.0 2.0 1.5 1.2 1.2 0.8 1.2	80 48 39 40 46 42 54 52	79 67 56 63 77 87 89 90	96 76 68 77 87 100 103 100
	ـ وماوعـ			<u>3.2</u>		6.A.	<u>5.9</u> 8.0	0.2	0.5_	13.2			15_5_		0.85		<u>-48</u> .	89	134
CM	(SATUR 8E1 REST OHM- CM		PASTE) BA H20 PCT	NA 502 ESP PCT	NA SE SAR	SALT 8D5 TOTL SOLU PPM	GYP 6F1A PCT	8AIA EC HMHOS/ CM	6N18 CA		SATURA 6P1B NA	6018 K	XTRAC1 611A CO3	6J1A HCD3	6K1A CL	6L 1A S04	6M1A M03	ATTERS 4F1 LQID LMIT PCT	4FZ PLST
000-21 021-30 030-43 043-58 058-72 072-96 096-125		6.8	89.7	1	1	110		0.22	0.6	0.6	0.7	TR						360 410 640 720	7 16 41 44
158-191 191-234																		4.20	17

Soil classification: Aeric Glossaqualf; fine, mixed, frigid.

Soil: Altdorf. Soil No.: 870WI-71-2.

Location: Wood County, Wisconsin; NWs, SE's, SWs, NEs, Sec. 23, T. 23 N., R. 5 E; 800 feet east and 450 feet north of road intersection.

Climate: Humid continental; average annual temperature is about 43° F; mean annual precipitation is 30 inches; and frost-free season is about 133 days.

Vegetation and land use: Natural vegetation was sedges and water-tolerant trees. Much of this land is in pasture or woodland.

Parent material: Silty sediments over clayey residuum from schist bedrock.

Physiography: Depressions in rock-controlled upland.

Topography: Nearly level; slope of 1 percent in an old pasture.

Drainage: Poorly drained. Ground water: 260 cm . Erosion: Slight.

Permeability: Slow Described by: Paul H. Carroll .

(Colors are for moist conditions unless otherwise stated)

Ap 701924 0 to 21 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) silt loam, gray (10YR 6/1) to light brownish gray (10YR 6/2) dry; weak fine subangular blocky structure; friable; many fine fibrous roots; neutral; abrupt smooth boundary.

A2g 701925 21 to 30 cm (8 to 12 inches). Grayish brown (2.5Y 5/2) silt loam with many medium prominent mottles of yellowish brown (10YR 5/6-5/8); weak fine subangular blocky structure; friable; common fine fibrous roots; strongly acid: clear smooth boundary.

A&Bg 701926 30 to 43 cm (12 to 17 inches). Grayish brown (2.5Y 5/2) silt loam (A2) with many medium prominent mottles of yellowish brown (10YR 5/6-5/8); moderate fine and medium subangular blocky structure; friable; strong brown (7.5YR 5/6-5/8) heavy silt loam Bt remmants are scattered through the horizon and occupy about 25 percent of the soil volume; common fine fibrous roots; few thin clay films on faces of peds and in tubular pores of the Bt portion of the horizon; strongly scid; clear wavy boundary.

B6Ag 701927 43 to 58 cm (17 to 23 inches). Dark grayish brown (2.5Y 4/2) and brown (7.5YR 5/2) silty clay loam (Bt) with many fine and medium prominent mottles of strong brown (7.5YR 5/6-5/8) and reddish brown (5YR 4/4); strong medium prismatic structure parting to moderate fine angular blocky structure; very firm; many thin very dark grayish brown (10YR 3/2) clay films on faces of peds and in tubular pores of the Bt part of the horizon; grayish brown (2.5Y 5/2) tongues of silt loam (A2) penetrate the horizon from above and occupy about 20 percent of the soil volume; few fine fibrous roots; less than I percent fine and medium polished rounded and subrounded quartz pebbles; strongly acid; clear wavy boundary.

IIB21t 70L928 58 to 72 cm (23 to 28 inches). Dusky red (10R 3/3-3/4) clay with common fine reddish black (10R 2/1) manganese spots; moderate medium prismatic structure parting to moderate fine angular blocky structure; very firm; few fine roots; continuous thin dark reddish brown (5TR 3/2) clay films on faces of peds and in continuous tubular pores; less than 1 percent fine and medium polished rounded and subrounded quartz pebbles; strongly acid; gradual wavy boundary.

IIB22t 70L929 72 to 96 cm (28 to 38 inches). Dusky red (10R 3/4) clay; moderate medium prismatic structure parting to weak fine angular blocky structure; very firm; common thin reddish brown (5YR 4/4) clay films on faces of angular blocky peds and continuous on faces of prisms and in tubular pores; less than 1 percent fine and medium polished rounded and subrounded quartz pebbles; few light reddish brown (5YR 6/4) weathered rock fragments 1 to 2 mm in size distributed through horizon; neutral; gradual wavy boundary.

IIB23t 701930 96 to 125 cm (38 to 49 inches). Dusky red (10R 3/3) clay; moderate medium and coarse prismatic structure parting to weak medium angular blocky structure; very firm; clay films thin and continuous on vertical faces of prisms; few weathered remnants of schist bedrock and less than 1 percent rounded and subrounded polished pebbles of quartz; mildly alkaline; gradual wavy boundary.

IIB3t 70L931 125 to 158 cm (49 to 62 inches). Dusky red (10R 3/3) clay; weak medium and coarse angular blocky structure; very firm; nearly continuous clay films along faces of widely-spaced cleavage planes; few fine polished rounded and subrounded quartz pebbles; mildly alkaline; clear wavy boundary.

IIC1 701932 158 to 191 cm (62 to 76 inches). Dusky red (10R 3/2-3/4) and dark reddish brown (5YR 3/4-3/3) silty clay loam; very thin platy (rock fabric) structure; firm ranging to friable through pedon; many very fine (1 to 2 mm) light reddish brown (5YR 6/4) weathered fragments from micaceous schiat bedrock; neutral; clear smooth boundary.

IIC2 701933 191 to 234 cm (76 to 93 inches). Brownish yellow (10YR 6/8), dark reddish brown (5YR 3/2-3/3) and dusky red (10R 3/2-3/3) very fine sandy loam; weak very fine platy (rock fabric); firm; 5 to 10 percent fine (approximately 2 mm) rock fragments from micaceous schiet bedrock; neutral; clear smooth boundary.

IIC3 701934 234 to 279 cm (93 to 107 inches). Variegated pale brown (10YR 6/3), pale green (5G 6/2) olive yellow (2.5Y 6/6-6/8), and olive (5Y 5/6) very fine sandy loam; weak very fine platy structure (rock fabric); friable; 5 to 10 percent (approximately 2 mm) rock fragments from micaceous schist rock; slightly acid.

Note: Soil temperature: 1-meter depth 59° F; 2-mater depth - 56° F. Vertical cracks of 1 to 2 cm extend from A&Bg to the B3 horizons, having resulted from a month-long period of drought. Cleavages developed along prism faces.

	SOIL Amery taxadjunct SOIL Nos. S69WI-48-1 LOCATION Polk County, Wisconsin	
	SOIL SURVEY LABORATORY Beltsville, Maryland LAB. Nos. 698293 - 698300	
	181b Size class and particle diameter (mm) 3AI	
	2A2	coarse fragments 3BI
	Depth Honzon Sand Silt Clay Very Coarse Carrie C	2 - 19 19 - 76
	Pet. of < 2 mm Pet. o	Pct. of
,i.		1 3 1 0 1
	1 1/100	
i * 1 }		
,		
.		
1.		
[4]		
(<u> </u>		
<u></u>		
4 5.1=		
te <u>. </u>		
•r=		
-		
-		
7.		
-		
Y-		
la		
-		
h	(v-	
<u> </u>		
	·	
<u>.</u>	•	
-		
<u> </u>		
11-		
	The state of the s	
<u></u>		- C
-5-T		
71.1		

13 Soil classification: Glosaic Entroboralf; coarse-leamy, mixed. Soil: Amery taxadjunct*. 869WI-48-1 Soil No.: Location: Polk County, Wisconsin; SW4, SEk, SEk, Sec. 26, T. 34 N., R. 15 W.
Climate: Humid continental; mean annual temperature is about 45° F; mean annual precipitation is about 30 inches; and average frost-free season is 135 days. Vegetation and land use: Native vegetation was mixed deciduous and coniferous forests with maple, birch, oak, aspen, and white pine predominate. About 50 percent of this soil is cultivated or used for livestock pasture. Corn, small grain, and forages are the principal crops. Parent material: Acid loamy sand glacial till. Physiography: Sloping to hilly glacial ground and end moraines. Topography: Site is a convex slope of about 5 percent near the top of a large hill. Drainage: Well drained. Ground water: Deep. Erosion: Slight. Permeability: Moderate. Described by: Paul H. Carroll. (Colors are for moist soils unless otherwise stated) Al 698293 0 to 8 cm (0 to 3 inches). Very dark grayish brown (10YR 3/2) silt loam, grayish brown (10YR 5/2) to light brownish gray (10YR 6/2) dry; moderate and weak fine subangular blocky and granular structure; friable; many roots; strongly acid; abrupt smooth boundary. Bir 69B294 8 to 23 cm (3 to 9 inches). Dark brown (10YR 4/3) and dark yellowish brown (10YR 4/4) loam; weak very fine and fine subangular blocky structure; friable; many roots; strongly acid; clear wavy boundary. 23 to 48 cm (9 to 19 inches). Brown (7.5YR 5/2 to 5/3) sandy loam; weak thin platy structure with numerous inped and exped vesicles; very friable; contains 6 to 8 percent gravel and cobblestones; many roots; medium acid; clear wavy boundary. A&B 69B296 48 to 66 cm (19 to 26 inches). Brown (7.5YR 4/4) light sandy loam A2 material occupies approximately 75 percent of the horizon, extending as tongues into or completely surrounding isolated remnants of reddish brown 48 to 66 cm (19 to 26 inches). Brown (7.5YR 4/4) light sandy loam A2 material occupies approximately (5YR 4/4) or yellowish red (5YR 4/6) sandy loam B2t material; weak thin platy structure in the A2 material and weak medium subangular blocky structure in the B2t material; clay films are thin and patchy on the subangular blocky faces of peds; firm with slightly fragic consistence; contains 8 to 10 percent by volume of gravel and cobblestones; common roots; slightly acid; gradual wavy boundary. B&A 69B297 66 to 89 cm (26 to 35 inches). Reddish brown (5YR 4/4) and yellowish red (5YR 4/6) sandy loam B2t material occupies approximately 70 percent of the horizon and has tongues and interfingers of brown (7.5YR 4/4) loamy sand and light sandy loam that penetrate the horizon from above; weak and moderate fine and medium subangular blocky structure in the B2t portion; clay films are thin and patchy on faces of peds but more numerous than in horizon above; firm in B2t, friable in A2 and slightly fragic throughout; contains 8 to 10 percent by volume of gravel and cobblestones; common roots; slightly acid; gradual wavy boundary. 69B298 89 to 112 cm (35 to 44 inches). Reddish brown (5YR 4/4) and yellowish red (5YR 4/8) sandy loam; weak and moderate medium subangular blocky structure with weak coarse petrogenic platiness throughout; firm; occasional tongues of A2 material from above penetrate this horizon; thin patchy clay films on faces of peds; contains 8 to 10 percent by volume of gravel and cobblestones; few roots; slightly acid; gradual wavy boundary. 698299 112 to 137 cm (44 to 54 inches), Reddish brown (5YR 4/4) and vallowish rad (5YR 4/6) light sandy loss

SOILAmery	SOIL Nos. <u>\$6</u> 9WI-48-2	LOCATION	Polk County, Wisconsin
SOIL SURVEY LABORATORY Beltsville, Maryland		LAB. Nos	69B301 - 69B308

-	r	181b						Siza clas	s and nertic	cle diamete	or (mm) 3A1	!						
		1010	Total	•, -	Ι	•	, ,	Sand Sand	and heur	Cie diamete		<u> </u>			382	Coar	se fragme	nts 3B1
		Sand	Silt	Clay	Very	Coarse	Medium	Fine	Very fine		int. III	Int. 🎞				2A2	l	Ī
(cm)	Horizon	(2-0.05)	(0.05-	(= D.002)	coarse		+ I			0.05-0.02			(2-0.1)	<.074	Cm	>- 2	2 - 19	19~76
(cm)		(6 5.55)	0.002)	,	(2-1)		(0.5-0.25)				0.002)		,	mm. Pct.		Pct.		t. of
0-6	Al	55.4	37.4	7.2	2.5	12.3	. of ≪ 2 i 15.3	16.4	9.0	17.9	19.5	34.8	46,4	50.2	0.96	10	6	4
6-25	Bir	58.5	36.4	5.1	3.4	10.9	16.1	18.1	10.0	19.1	17.3	37.8	48.5	47.9	0.93	12	10	2
25-43	A2	69.7	26.1	4.2	5.3	13.6	18.5	21.3	11.0	14.0	12.1	35.4	58,7	36.9	0.87	19	15	4
43-65	A&B	72.5	20.3	7.2	6.7	15.7	19.9	20.9	9.4	8.6	11.7	28.5	63.1	32.7	0.79	28	24	10
65-79 79 - 125	B&A B2t	67.3	21.1	11.6	4.2 6.7	12.0 14.4	17.8 16.9	22.7 19.8	10.6 9.2	9.2	10.6	32.6 28.2	56.7 57.7	38.1	0.80	27 24	17 16	8
125-155	B3t	75.5	14.9	9.6	6.8	17.9	22.2	21.1	7.5	6.9	8.0	24.0	68.0	28.4	0.79	28	23	5
155-178	c	69.3	18.6	12.1	4.9	13.7	18.6	22.2	9.9	9.1	9.5	30.1	59.4	36.0	0.84	22	16	6
										,	<u> </u>			_			_	
	6Ala	Na Pyr	o.ext.	1				Bulk densit	y	4D1		ater conte	nt	8E1	4C1	L .	pH .	
Depth	Organic	6C5a	6GSa	C-D	Carbonate	Ext. iron	Plastí	4A1e	4A1h			481c	482	Resis-			8¢ic	8C1s
(cm)	carbon	Fe	Al	A1	as CaCO ₃	as Fe	city	3≰ bar	Oven dry	COLE		¥ ber	15 bar	tivity ohms-	WRD	(1:2)	(1:1)	(1:1)
							Index	_						cm		l ' '	' '	
	Pet.	Pct.	Pct.	Pct.	Pct,	Pct,		g/cc	8/cc		Pct.	Pct.	Pct.	60°F	ın/in	CaCl2	KCI	HSO
<u>0-6</u>	3.45	0.2	0.1	0.1		0.9		1.05	1.18	0.04		23.1	7.3		0.17	5.0	4.7	5.3
6-25 25 - 43	0.95	0.5	0.2	0.1		0.7		1.51 1.73	1.54	0.01		13.7 9.9	2.9		0.16	4.5 4.6_	3.9	5.1 5.4
43-65	0.24	† —	-	0.1		0.8	_	1.79	1.84	0.01	<u> </u>	10.0	3.3	_	0.12	4.7	3.8	5.2
65-79	0.24			0.1		0.9		1.79	1.85	0.01		12,2	4.4		0.14	4.8	4.0	5.4
79-125	0.12		-	0.1		1.0	N.P.	1.82	1.90	0.01		10.7	4.9	10000	0.11	5-0	14.0	5.5. 5.8
125 - 155 155-178	0.12			tr.		0.7		1.81	1.91	0.01		11.2	3.7 4.4	10000	0.14	5.1 5.1	4.1	5.7
				-														ļ
- , ;	1	Fatractal	ole bases	5B4a		6H2s	C	EC	601e	<u>+</u> _	Fine		tatios to cl	y 8Dl	803	<u> </u>	Base Sal	turation
	6N2e	602d	6P2b	602ъ		Ext.					clay						5C3	5C1
Depth ()		-					5A3a	5A6a	Ext.		<.0002	CEC	Ext.	15-bar	Ca/Mg			
(cm)	Ca	Mg	Na	K	Sum	acidity	Sum	nh _h 0Ac	Aí		mm	sum	iron	water			Sum cations	NH ₄ OA
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	і meg/100 g	i ——	1 (4400.00	4-1			Pct.						Pct.	Pct.
-6 °	7.9	1.7	tr.	tr.	9.6	11.2		13.7	tr.		2.8	2.89	0.13	1.01			46	70
6-25	0.9	0.4	tr.	tr.	1.3	7.4		5.5 3.9	1.2		0.9	1.70	0.14	0.57			15 27	24 33
25-43 43-65	2.3	0.3	tr.	tr.	3.2	3.5 4.3	+ -	5.7	0.5	 	1.4	1.04	0.11	0.48	_	-	43	56
65-79	3.3	1.4	tr.	tr.	4.7	4.1		7,1			3.3	0.76	0.08	0.38			53	66
79-125	4.8	1.8	tr.	tr.	6,6	3-5	10-1	8,2	ļ	├ —	4.3	0.77	0.08	0.37	_		65	80_
125-155	4.1	1.5	tr.	tr.	5.6	2.5		7.6			3.3	0.84	0.07	0.38			69 66	80 79
155-178	4,2	1.8	tr.	tr.	0.0	3.1	9.1	_ '."			4.0	0.17	0.07	0.30		-		-
# J			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		Ĺ		<u> </u>			<u> </u>	 		<u> </u>	<u> </u>
	_ , C	lay fr	action	analy	sis 7A	1		Sand			lysis	7 <u>Al</u>						
Depth			002 mm. 7A2		7A	2				,02 mm. Bl								
(cm)			-ray		DT					graphi	c							
			/ <u>b</u> /		<u>b</u>	/				<u>b</u> /								
					Pe	t.	<u></u>	50:3		ct.	m."	- · · ·		_	1W			
	MUS MIL	,KKI,Q	\mathbf{z}_{1}		KK	τ∩ leαs	67,FE4	,rv 1,	rd22,E	ru, HNl	TAI,M	⊳ ı,AU	¢ T		20			
0-6	111391163									מה ליות	ב שאני	ጥልገ መለ	1 M©≥1	TITLE T	125			
6-25		. QZ2.M	Tl.MI1	.CLL.F	DI KK	20 92	73.FE1	,ZR< 1.	POS 1.F.	$n_{\rm T}$, $r_{\rm L}$) - INI	TACT POST	T There a	ALL	25			
6-25 25-43	VRh KK3	QZ2,M	T1,MI1	CLL,F	DI KK	20 <u>9</u> 2	73,FE1	,ZR< 1,	POC 1, F.	DI (FEF) mr	area gon	T-714F2 T	' ALLY T	22			
6-25 25-43 43-65 65-79	VR4,KK3			_					-					′• Δ14- T				
6-25 25-43 43-65 65-79				_	DI KK		73,FE1		-						24			

A/Relative amounts (X-ray): 5 = dominant, 4 = abundant, 3 = moderate, 2 = small, 1 = trace.

b/Mineral code: MV = montmorfilonite-vermiculite, MI = mica, KK = kaolinite, QZ = quartz, FE = iron oxides,
PO = plant opal, FD = feldspar, EP = epidote, HN = hornblende, TA = talc, MS = muscovite, AU = augite,
VR = vermiculite, MT = montmorfilonite, CL = chlorite, ZR = zircon, GN = garnet, BT = biotite, SP = sphene.

Soil classification: Typic Glossoboralfs; coarse-loamy, mixed.

Soil: Amery.

S69WI-48-2. Soil No.:

Location: Polk County, Wisconsin; NWk, NE'k, Sec. 3, T. 33 N., R. 15 W.; 200 yards west and 100 feet south of turn

in county road.

Humid continental; mean annual temperature is about 45° F., mean annual precipitation is about 30 inches,

and average frost-free season is 135 days.

Vegetation and land use: Native vegetation was mixed hardwood and pine with oak, maple, birch, aspen, ash, and white pine. Much of this soil is used for crop production and livestock pasture. Corn, small grain, and forage are the principal crops.

Parent material: Acid loamy sand to sandy loam glacial till.

Physiography: Sloping to hilly glacial ground and recessional moraines.

Topography: Site is on a convex slope of about 3 percent near the top of the hill. Drainage: Well and moderately well drained.

Ground water: Deep.

Erosion: Slight.

Permeability: Moderate and moderately slow.

Described by: Paul H. Carroll.

(Colors are for moist soils unless otherwise noted)

69B301 0 to 6 cm (0 to 2 inches). Very dark grayish brown (10YR 3/2) loam, gray (10YR 6/1) dry; weak and moderate fine subangular blocky structure; many roots; strongly acid; abrupt smooth boundary.

6 to 25 cm (2 to 10 inches). Dark brown (7.5YR 4/4) fine sandy loam; weak fine and very fine subangular blocky structure; friable; many roots; medium scid; clear wavy boundary.

A2 69B303 25 to 43 cm (10 to 17 inches). Dark brown (7.5YR 4/4) and brown (10YR 5/3) sandy loam; weak fine and very fine subangular blocky structure; friable; contains 6 to 8 percent by volume of gravel and cobblestones; common roots; medium acid; clear wavy boundary.

A&B 69B304 43 to 65 cm (17 to 26 inches). Dark brown (7.5YR 4/4) eluviated light sandy loam occupies 50 to 60 percent of the volume of the horizon and tongues into or completely surrounds isolated remnants of dark reddish brown (5YR 3/4) sandy loam B2t material; weak and moderate medium subangular blocky structure, with the A2 material having the weaker structure; friable; few thin clay films on faces of peds of the B2t; contains 8 to 10 percent by

SOIL Amery SOIL Nos. S69WI-54-1 LOCATION Rusk County. Wisconsin

SOIL SURVEY LABORATORY Beltsville, Maryland LAB. Nos. 69B248 - 69B254

		1						9 1	4 41	-1- 44	- (38)							
		181b	Total					Size clas	s and parti	cie diamete Sii		! 			382	Cont	se fregme	ntu 381
			i (OLA)	1	-	ı	1	Sena		3"	<u> </u>				JUL	2A2	se tregiste	351
Depth	Horizon	Sand	Şilt	Clay	Very	Coerse	Medium	Fine	Very fine		Int. III	Int. II		<.074		> 2	2 - 19	19-76
(cm)		(2-0.05)	(0 05-	(< 0.002)	coarse (2-1)	(1-0.5)	(0.5-0.25)	(0.25-0.1)	(0.1-0.05)	0.05-0.02	(0.02-	(0.2-0.02)	(2-0.1)	mm	Cm	_		I
		l.,	0.002)	ı	l (= -r		l t.of≪:2≀		l	'	0.002)			Pct.		Pct.		zt. of 76mm
0-10	Al	52.9	39.3	7.8	3.2	13.7	14.6	14.6	6.8	17.1	22.2	30.6	46.1	51.0	1.00	2	2	0
10-12	A2		AMPLEI		•							50.5		/=:-		-	_	-
12-26	Bir	52.5	39.7	7.8	2.8	10.8	14.3	16.0	8.7	20.1	19.6	36.7	43.8	52.9	0.94	9	8	1
26-46	A'2	67.2	28.2	4.6	5.0	13.7	17.1	20.9	10.5	14.9	13.3	35.8	56.7	38.7	0.89	15	12	3
46-62	A&B'	74.1	19.9	6.0	5.9	14.5	18.7	23.9	11.1	10.8	9.1	34.1	63.0	31.9	0.84	20	10	10
62-75	B'2t	73.8	17.0	9.2	3.3	10.7	20.8	27.8	11.2	9.3	7.7	34.4	62.2	32.1	0.81	25	13	12
75-115	B'3tx	74.3	18.0	7.7	4.8	13.2	17.9	25.2	13.2	10.3	7.7	37.0	61.1	32.8	0.83	23	17	6
115-150	Сж	77.6	18.4	4.0	8.4	17.5	18.7	22.1	10.9	10.0	8.4	32.1	66.7	28.4	0.73	34	21	13
																		,
-	1	Wa Pyr	o ext	l			1	Bulk densit	у	4D1	y	later conte	nt	8E1	4C1		pН	
Depth	6Ala Organic			I	Carbonate	Ext. iron	701 + 4	_ 4A1e	4A1b	401	_	4B1c	4B2	Resis-	1 701		8Clc	8C1a
(em)	carbon	6C5a	6G5a	Al	as CaCO ₂	as Fe	Plasti city			COLE		4010	102	tivity	WRD			
(cm)		Fe	A1				CTCA	≯ bar	Oven dry	OULE		⅓ ber	15 ber	ohms-	WALL	(1:2)	(1:1)	(1:1)
							Index							cm	in/in	CaClo	KCI	H ₂ 0
	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.		g/cc	E/cc	L.,	Pct.	Pct.	Pct.	60°F				
0-10	6.15		1	0.1		0.5		1.09	1.19	0.03	1	26.3	12.5		0.15	5.5	5.3	5.9
10-12			l	١,,		١							٠. ٨). E	1	c 0
12-26	0.89	0.1	0.1	0.1	-	0.7	ļ	1.59	1.67	0.02		12.5	4.2		0.13	4.5	3.9	5.2
26-46 46-62	0.25			0.1		0.5		1.77	1.79	0.00		9.0	2.5		0.06	4.7	4.0	5.5
62-75	0.13			tr.		0.6	N.P.	1.95 1.83	1.96	0.00		9.1	3.9	10000	0.10	5.0	4.1	5.4
		0.5	0.2	tr.		0.8	- 11.1	1.84	1.90	0.01		8.8	7.7	15000	0.11	5.2	4.1	5.9
75-115 115-150	0.12	0.5	0.2	tr.		0.6	N.P.	1.88	1.92	0.01		7.6	1.7		0.11	5.5	4.4	6.2
		'''	''-		···													-
	<u> </u>		<u> </u>	 5B4a			-			,				y SDI	803	.,	Base sai	
		Extractat	ole bases	7,546	ı	6H2a		EÇ	6Gle		Fine	N	latios to cla	1	- 803		5490 34	I I I I I I I I I I I I I I I I I I I
Depth	6N2e	602d	6P26	6Q2b		Ext.		F . C -			clay		_		l		5C3	5C1
(cm)	Ca	Mg	Na	ĸ			5A3a	5A6a	Ext.		<.0002		Ext. Iron	15-ber water	Ca/Mg		Sum	NH4 OAc
••			"-		Sum	acidity	Sum	VH _L OAc	^"		um	SUM	proa	Water			cations	INT 4 OAC
		-	1	<u>'</u>	meg/100 g	·	1	· -			Pct.						Pct.	Pct.
0-10	13.9	10.9	tr.	tr.	24.8	15.0	39.8	24.7	Ι		2.6	5.10	0.06	1.60	<u> </u>		62	100
10-12		1				-	-						****					
12-26	1.5	0.6	tr.	tr.	2.1	9.9	12.0	7.0	1.4		2.0	1.54	0.09	0.54			18	30 38
26-46	1.1	0.6	tr.	tr.	1.7	8.3	10.0	4.5	0.8		0.4	2.17	0.11	0.54			17	
46-62	1.8	1.0	tr.	tr.	2.8	4.1	6.9	4.9	١.		1.7	1.15	0.10				40	57
62-75	2.9	1.5	tr.	tr.	4.4	7.1	11.5	6.2			3.7	1.25	0.09	0.42	ļ		38	70
75-115	2.8	1.4	tr.	tr.	4.2	1.5	5.7	5.9			3.1	0.74	0.08	0.39			74	71
115-150 	1.9	1.0	tr.	tr.	2.9	0.6	3.5	3.7			1.4	0.88	0.10	0.42			83	78
														ļ	ļ			
	Clay fr			sis 7A	1		Sa		ction		is 7Al							
Depth	- <	0.002 :	men					0.	2-0.02	mm								
(cm)		7A2		7A3				_	7B1									
		X-ray		DTA				Pe	trogra	phic								
		<u>a/b</u> /		<u>b</u> /					_ <u>ъ</u> /									
	L			Pet				4 T OFF:	Pet.	780 2 F	rmil. was			TW				
0 -1 0 12-26 26-46	MV4,MI	1,KK1,	QZ1,FD	1 KK5	QZT7	,FE2,1	M 1,ZR	:1,SF	1,1001	'kdt'	нич , ег	¢ 1		19				
46-62					+													
62-75 75-115	MV5,MI	ı,KKl		KK5	QZ77	,FE1,2	R1,SP	1,FD12	,HN4,E	Pl,GNl	,VRl,T	Al,M9×	1,AU×1	20				

a/Relative emounts (X-ray): 5 = dominant, 4 = abundant, 3 = moderate, 2 = small, 1 = trace.

b/Mineral code: MV = montmorillonite-vermiculite, MI = mica, KK = kaolinite, QZ = quartz, FD = feldspar,

FE = iron oxides, TM = tourmaline, ZR = zircon, SP = sphene, PO = plant opal, HN = hornblende, EP = epidote,

GN = garnet, VR = vermiculite, TA = talc, MS = muscovite, AU = augite.

KK5 QZ73,FE1,FD23,HN1,M8x1,TAx1,EFx1,VFx1,GNx1

115-150 MV5,MI1,KK1,QZ1

24

Soil classification: Typic Glossoboralfs; coarse-loamy, mixed.

Soil: Amery.

Soil No.: S69WI-54-1.

Location: Rusk County, Wisconsin; SWx, NE%, Sec. 7, T. 34 N., R. 6 W; 200 feet west and 1100 feet south of "T"

road intersection.

Climate: Humid continental; mean annual temperature is about 42° F., mean annual precipitation is about 30 inches, and average frost-free season is 125 days.

Vegetation and land use: Native vegetation was mixed northern hardwood forest. Much of this soil is used for livestock pasture and crop production. Principal crops are small grain, corn, and forage.

Parent material: Acid sandy loam glacial till.

Physiography: Sloping to hilly glacial ground and end moraines.

Topography: Site is on a convex slope near the top of a ridge. Drainage: Moderately well and well drained.

Ground water: Deep.

Erosion: Slight.

Permeability: Moderately slow and moderate.

Described by: Paul H. Carroll.

(Colors are for moist soils unless otherwise stated)

Al 69B248 0 to 10 cm (0 to 4 inches). Very dark grayish brown (10YR 3/2) loam, light gray (10YR 6/1) dry; weak fine subangular blocky atructure; friable; common roots; slightly acid; abrupt smooth boundary.

A2 (Not sampled) 10 to 12 cm (4 to 5 inches). Dark grayish brown (10YR 4/2) and grayish brown (10YR 5/2) loam; weak thin platy structure; very friable; common roots; medium acid; abrupt smooth boundary.

Bir 69B249 12 to 26 cm (5 to 10 inches). Dark brown (7.5YR 4/4) loam; weak fine subangular blocky structure; friable; common roots; medium acid; clear wavy boundary.

A'2 69B250 26 to 46 cm (10 to 18 inches). Grayish brown (10YR 5/2) and brown (7.5YR 5/2) sandy loam; weak thin platy structure; friable; contains 5 to 7 percent by volume of gravel and cobblestones; common roots; strongly acid; clear wavy boundary.

A&B' 69B251 46 to 62 cm (18 to 24 inches). Grayish brown (10YR 5/2) and brown (7.5YR 5/2) light sandy loam A'2 material interfingers and tongues into the underlying reddish brown (5YR 4/4) to yellowish red (5YR 4/8) sandy loam B'2t material; weak thin platy A'2 and weak medium subangular blocky B'2t; friable; tongues of A'2 material are 2 to 6 cm thick; contains 10 to 12 percent by volume of gravel and cobblestones; common roots; strongly acid; clear irregular boundary.

B'2t 69B252 62 to 75 cm (24 to 30 inches). Reddish brown (5YR 4/4) and yellowish red (5YR 4/6-4/8) sandy loam; the higher chroma colors are marginal to thin gray (5YR 5/1-6/1) horizontal bands (1 to 2 cm thick) of clayey material situated near the horizon's upper boundary; moderate medium subangular blocky structure with weak to moderate coarse platiness throughout; friable and firm; thin patchy clay films on subangular blocky faces of peds; fibrous roots interlace with one another at lower boundary where horizon contacts the underlying fragipan; contains 10 to 12 percent by volume of gravel and cobblestones; medium acid; clear wavy boundary.

B'3tx 69B253 75 to 115 cm (30 to 44 inches). Reddish brown (5YR 4/4) sandy loam with few fine distinct and prominent mottles of yellowish red (5YR 4/6-4/8); weak and moderate medium subangular blocky structure with weak coarse platiness throughout; firm; thin patchy dark reddish brown (5YR 3/4) clay films on faces of peds; contains 10 to 12 percent by volume of gravel and cobblestones; few roots; medium acid; gradual wavy boundary.

Cx 69B254 115 to 150 cm (44 to 60 inches). Reddish brown (7.5YR 4/4) sandy loam with loamy sand pockets; weak coarse platy structure that parts under pressure to weak medium subangular blocky structure; firm; occasional thin clay films on surfaces of plates; medium acid; contains 10 to 12 percent by volume of cobblestones and gravel.

	SOIL Amery taxadjunct SOIL Nos. S69WI-54-4 LOCATION Rusk County, Wisconsin
	SOIL SURVEY LABORATORY Beltsville, Maryland LAB. Nos. 69B270 - 69B276
	181b Size class and particle diameter (mm) 3A1
	(2-0.05) (0.05- (5-0.002) CONTO (1-0.5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-0.02) (2-0.1) (0.05-0.1) (0.05-0.02)
	0.002) C-1) Pct. of < 2 mm Pct. of < 76mm
7	
A LO	
L	-
1.	
)# \$ - -	
· ·	
<u></u>	
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>-</u>
][\(\frac{1}{2}\).	
=	
	· .
*	
<u>r.</u>	
•	
E _j	
1.	
-	
r	
* *	
F	
1-	
1 7	
13	
,1 ——	
·	
1 11 hours	
1-	
-	
r- ————————————————————————————————————	

Soil classification: Dystric Entrochrept; coarse-loamy, mixed-

Soil: Amery taxadjunct

Soil No.: 869WI-54-4.

Location: Rusk County, Wisconsin; NWs, NEW, Sec. 7, T. 34 N., R. 6 W.; 180 yards north of road along pipeline and 15 feet northeast of large oak tree.

Climate: Humid continental; mean annual temperature is about 42° F; mean annual precipitation is about 30 inches; and average frost-free sesson is 125 days.

Vegetation and land use: Native vegetation was mixed northern hardwood forest. Much of the soil is used for livestock pasture and crop production. Principal crops are small grain, corn, and forage.

Parent material: Acid sandy loam glacial till.

Physiography: Sloping to hilly glacial ground and end moraines. Topography: Site is on a plane east facing 3 percent slope.

Drainage: Moderately well and well drained.

Ground water: Deep. Exosion: Slight.

Permeability: Moderate and moderately slow.

Described by: Paul H. Carroll.

(Colors are for moist soils unless otherwise noted)

Al 69B270 0 to 14 cm (0 to 6 inches). Very dark grayish brown (10YR 3/2) loam, gray (10YR 6/1) dry; weak fine subangular blocky structure; many roots; friable; strongly acid; clear smooth boundary.

Bir 69B27l 14 to 27 cm (6 to 11 inches). Dark brown (7.5YR 4/4) light loam; weak fine subangular blocky structure; friable; many roots; strongly acid; clear wavy boundary.

A2 69B272 27 to 49 cm (11 to 19 inches). Brown (10YR 5/3) and yellowish brown (10YR 5/4) light loam; weak fine medium subangular blocky structure; friable; common roots; medium acid; clear wavy boundary.

69B273 49 to 65 cm (19 to 26 inches). Dark brown (7.5YR 4/4) sandy loam with brown (7.5YR 5/3-5/4) somewhat coarser textured tongues of eluviated material that penetrate the horizon and occupy 20 to 40 percent of the horizon body; weak medium subangular blocky structure in the B2t material and weak thin platy structure in the A2 material; friable; contains 8 to 12 percent gravel and cobblestones; common roots; medium acid; clear wavy boundary.

65 to 86 cm (26 to 34 inches). Dark reddish brown (5YR 3/4) sandy loam with many fine distinct strong brown (7.5YR 5/6) mottles; weak and moderate fine subangular blocky structure having weak medium platiness throughout; firm with slightly fragic consistence; thin patchy to nearly continuous clay films on most faces of peds; contains 8 to 12 percent gravel and cobblestones; few roots; medium acid; clear wavy boundary.

86 to 114 cm (34 to 45 inches). Dark reddish brown (5YR 3/4) and reddish brown (5YR 4/4) sandy loam with common fine distinct strong brown (7.5YR 5/6) mottles; weak coarse platy structure; firm with fragic consistence; clay films continuous on some horizontal faces of peds, patchy on others; contains 8 to 12 percent gravel and cobblestones; few roots; slightly acid; gradual wavy boundary.

114 to 152 cm (45 to 60 inches). Dark reddish brown (5YR 3/4) and reddish brown (5YR 4/4) sandy losm with many fine prominent strong brown (7.5YR 5/8) mottles; weak and moderate coarse platy structure: firm with slightly

cobblestones; slightly acid.

^{*}This pedon is a taxadjunct to the Amery series because it lacks the subsoil clay accumulation typical of that series.

U. S. DEPARTMENT OF AGRICULTURE SDIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN. NEBRASKA

SOIL NO - - - - - S75WI-95-5 COUNTY - - - POLK

GENERAL METHODS- - -14.1818.2A1.2B SAMPLE NOS. 760203-760209

HORIZON - -)RATIO FINE (- -INTR FINE NON-8D1 MEDS FNES VENS COST CORS VFSI SAND CLAY vcos FNSI C03~ SAND SILT CLAY . I I CLAY 15-1-.5--10-CLAY .05 .25 -002 -002 -0002 .5 . 10 .05 .02 -002 .002 -10 +02 ŤΩ - PCT LT 2MM CH PÇT CLAY PCT 000-025 14.5 12.5 74.4 11.1 2.7 7.5 3.3 3.3 7.0 40.1 34.3 -64 76.4 68.7 42.1 37.5 35.9 34.3 025-036 3.6 1.9 7.5 5.0 21.0 036-051 .2 1.1 7.2 12.7 31.2 23.1 3.1 REA 10.3 10.2 1.2 45.0 49 .42 13.0 49.1 051-076 59.0 1.0 54 .43 B2T 17.1 1.6 076-086 15.0 21.9 21.9 6.8 7.0 14.6 9.6 53.8 23.5 2B3 086-109 201 92.7 3.1 4.2 1.0 1.9 36-6 43.8 9.9 1.1 92.2 4.8 24 -45 109-152 202 (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)(BULK DENSITY)(- - - VOL. (- - - - - - WEIGHT - - - - - -) 4A1D 4A1H 401 481C -WATER CONTENT- - - -) CARBONATE (- -PH - -) 482 15-4B1C 4C.1 6E1B 3A1A BC1A BC1E 20-2 1/3-OVEN COLE WRD GT 75-20 20-5 5-2 1/10 GT 1/3-LT .074 BAR PCT BAR DRY BAR BAR CM/ .002 H2D CACL PCT (- - - PCT LT 75 - -) LT20 G/CC G/CC CM PCT CM PCT PCT PCT PC T PCT .28 TR TR -016 7.1 000-025 92 TR 1.28 1.34 28.2 5.6 5.2 025-036 1.55 TR 94 96 TR 1.48 .016 5.0 TR TR 22.1 .26 036-051 ŤR TR .026 23.0 8.9 5.3 4.5 1.65 . 22 5.0 051-076 076-086 TR 1.50 .033 10.2 a 0 TR 94 TR 24.3 4.3 .13 TŘ 2 1.82 5.0 4-0C 1.9 086-109 10 1.64A 5.2 4.5 109-152 35 0 28 15 1.608 . 03 DEPTH (ORGANIC MATTER) IRON PHOS (- -EXTRACTABLE BASES 584A- -) ACTY (CAT EXCH) RATIO RATIO (BASE SAT) 6A1A C/N 6C2B EXT 6N2E 6D2D 6P 2B 692B 6G1E 5 F 1 6BIA 6H1A 5A3A 5A6A 8D1 803 5C3 5C1 ORGN TOTL SUM EXTB EXTB CA NI TG CARB EXTR TEA FXT ACTY TO TΩ NHAC ACTY -MEQ / 100 CLAY PÇT PCT PCT (- - - - -MG PCT PCT CM PCT PCT G-000-025 1.70 . 156 7.5 TR 8.6 5.7 7.5 16.1 12.4 10.5 8.0 TR 60 025-036 036-051 051-076 4.8 6.0 .38 . 043 4.8 .8 2.4 50 46 . 038 7.0 . 1 • 2 9.7 8.1 17.8 14.1 .67 2.9 54 69 7.5 4.5 11.6 2.0 .3 21.4 16.4 2.0 .19 .1 9.8 . 69 54 71 2.1 .Z 13.0 53 6.1 10.1 .67 076-086 .12 4.0 2.6 086-109 .08 1.8 TR 2.5 2.1 4.6 . 95 45 63 109-152 -06 ---- SATURATION EXTRACT 8A1----) ATTERBERG DEPTH (SATURATED PASTE) SALT BEL BCLB REST PH BAIA 6NIB 6018 6PIB 6Q18 6IIA 6JIA 6KIA 6LIA 6MIA EC CA M6 NA K CO3 HCO3 CL SO4 NG3 5D2 SF. 8D S 6F 1A 4F1 TOŤL LOID PLST H20 SAR ESP SOLU MMHOS/ LMIT INDX CM (----- NEQ / LITER -----) PCT CM CM PCT PCT PPM PCT 000-025 025-036 036-051 38 16D 051-076 076-086 086-109 17000 5.0 20.0 .08 1.1 109-152 CLAY MINERALOGY (742C). .AY MINERALOGY (7A2C).

36-51 MT4 KK3 VR2 MI1 CL1

51-76 MT4 KK3 VR1 MI1 QZ1

76-86 MT4 KK3 WR1 MI1 QZ1

76-86 MT4 KK3 MI1 QZ1 VR1

RELATIVE ANDUNTS: (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE.

MINERAL CODE: MT = MONTMORILLONITE MI = NICA KK = KAOLINITE CL = CHLORITE VR = VERMICULITE QZ = QUARTZ.

AND MINERALOGY (7B1). PLACEMENT: MIXED.

036-51 VFNS - RE76 QZ74 FE1 PO1 TM ZR SP FD21 MS1 CL1 HN1 BT EP VR GN KK.

051-76 VFNS - RE76 QZ71 FE1 TM ZR SP FD25 HN2 MS1 EP CL GS KK.

076-86 VFNS - RE78 QZ76 FE2 ZR SP FD18 MS1 HN1 VR1 EP1 GN CL AU. SAND MINERALOGY (781). 036-51 VFNS - RE76 051-76 VFNS - RE72 NERAL CODE: BT = BIOTITE CL = CHLORITE EP = EPIDOTE FD = FELDSPARS GS = GLASS HN = HORNBLENDE MS = MUSCOVITE

PD = PLANT OPAL QZ = QUARTZ TM = TOURMALINE ZR = ZIRCON RE = RESISTANT MINERALS FE = IRON MINERALS

SP = SPHENE VR = VERMICULITE GN = GARNET KK = KAOLINITE AU = AUGITE.

CORE SAMPLE, METHOD 443A. RELATIVE AMOUNTS: AS PERCENT. MINERAL CODE: BT = BIOTITE C

ESTIMATED. (B)

SIEVED SAMPLE,

SIEVED SAMPLE, METHOD 481A. LIQUID LIMIT AND PLASTIC INDEX BY USDA-SCS, SOIL MECHANICS LAB, LINCOLM, NE.

Soil classification: Typic Glossoboralfs; fine-silty over sandy or sandy-skeletal, mixed.

Soil: Antigo.

Soil No.: S75-WI-95-5.

Location: Polk County, Wisconsin; SRk, SEk, Sec. 25, T. 34 N., R. 17 W.; 150 feet west of road and 800 feet north of Highway 8. About 45 25' N. latitude and 92 26' W. longitude.

Climate: Humid continental; mean annual temperature is 43° F; mean July temperature is 71° F; mean January temperature is 11.8° F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days. (Data from Amery, WI, weather bureau substation.)

Vegetation and use: Native vegetation was mixed northern hardwood and conifer forests. Most large areas of this soil have been cleared and are being used for general farming. This sample site is presently in old hay meadow.

Parent material: Thin loss mantle, 20 to 36 inches thick, and acid outwash sand and gravel. Physiography: Nearly level to sloping outwash plains and stream terraces in glaciated region.

Topography: Nearly level plain; sample site has a plane slope of less than 1 percent.

Drainage: Well drained.

Ground water: Over 5 feet deep.

Brosion: Slight.

Permeability: Moderate in solum and rapid in substratum. Described by: A.J. Klingelhoets and G.B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

760203 0 to 25 cm (0 to 10 inches). Very dark grayish brown (10YR 3/2) silt loam; weak fine subangular blocky structure parting to moderate fine granular; friable; many roots; slightly acid; abrupt smooth boundary.

A2 760204 25 to 36 cm (10 to 14 inches). Brown (10YR 5/3) silt loam; moderate fine platy structure; friable; many roots; slightly acid; clear wavy boundary.

36 to 51 cm (14 to 20 inches). Dark yellowish brown (10YR 4/4) silt loam (B2t); moderate fine subangular blocky structure; friable; occupies about 70 percent of the horizon; few thin patchy clay films on some faces of peds; tongues of brown (10YR 5/3) silt loam (A2) 10 to 20 mm thick extend to bottom of horizon; moderate fine platy structure; many roots; medium acid; clear wavy boundary.

B2t 760206 51 to 76 cm (20 to 30 inches). Dark yellowish brown (10YR 4/4) heavy silt loam; moderate medium sub-angular blocky structure; firm; thin patchy clay films on most faces of peds; many roots; medium acid; clear wavy B2t 760206 boundary.

IIB3 760207 76 to 86 cm (30 to 34 inches). Dark brown (7.5YR 4/4) light loam; moderate medium subangular blocky structure; friable; few thin patchy clay films on faces of peds; about 6 percent cobbles and 10 percent coarser than 2 mm by volume of the matrix; many roots; medium acid; abrupt wavy boundary.

86 to 109 cm (34 to 47 inches). Dark brown and reddish brown (7.5YR 4/4 and 5YR 4/4) coarse sand; single grained; loose; stratified; estimated 10 percent by volume coarse fragments over 2 mm in diameter; few roots; medium acid; abrupt wavy boundary.

<u>IIC2 760209 109 to 152 cm (47 to 60 inches)</u>. Dark brown (7.5YR 4/4) coarse sand and fine gravel; single grained; loose; stratified; estimated 40 percent by volume coarse fragments over 2 mm in diameter; few roots; medium acid.

Additional notes:
1. Some pedons have more evidence of degradation than the one sampled.

2. pH's in field determined by Truog kit.

LINCOLN. NEBRASKA SOIL NO - - - - 575WI-95-4 COUNTY - - - POLK SAMPLE NOS. 760196-760202 GENERAL METHODS- - - 1A. 1818. 2A1. 2B (----- PARTICLE SIZE ANALYSIS, LT 2MM, 3A1, 3A1A, 3A18 -DEPTH HOR IZON - -)RATIO CORS MEDS FNES VFNS COSI - SAND - -FINE (- -INTR FINE NON-VFS1 SAND C03vcos FNSI SAND SILT CLAY CLAY CLAY 11 15-BAR CLAY . 25 -05 -002 -602 -0002 1 . 5 .10 . 05 .02 .002 .002 -10 .02 CL AY TO ÇM - PCT LT 2MM CLAY PCT PCT 000-025 7.2 6.8 7.4 19.2 15.6 1.58 46.0 1.8 36.7 27.6 9.3 69.5 75.7 46.8 42.0 39.9 33.5 50. 9 43.0 025-038 A12 6.1 .4 .3 .1 .2 .3 .7 4.9 2.5 1.9 70.4 65.6 038-053 15.1 20.7 .O .7 12.9 .41 AZG B21tg 45.8 6.5 26.2 5.9 053-074 30.0 2.9 36.4 38.7 42.9 10.4 50 68.9 75.8 074-094 822G 45.0 16.3 8.1 TR 36.2 31.2 13.8 50 .53 ŤŘ 40.0 094-122 42.8 44.6 2.1 34.1 10.5 2.8 .55 C1 12.6 50.5 32.2 DEPTH BULK DENSITY) (- - - - WATER CONTENT- - - -) CARBONATE (- -PH - -) - -- 3 4A1D 4A1H 20-2 1/3- OVEN 482 15+ SCIA SCIE 4C1 WRD 6E1B 3A1A 75-20 20-5 5-2 OVEN COLE 1/10 LT · 074, AAR CM/ CM .002 CACL PCT BAR DRY BAR BAR H20 G/CC PCT I- - - PCT LT 75 LT20 G/CC CM PC1 PCT PCT PÇT 000-025 TR O 0 83 TR 1.29 1.36 -018 36.1 11.4 .33 4-4 Ď TR 4.7 025-038 038-053 .007 80 87 TR TR 1.38 1.41 TŘ O 23.4 9.7 .26 4.7 4.2 TR а Ò TR 1.48 053-074 0 1.41 92 1.52 .025 23.9 8.7 074-094 0 92 1.51 016 4.8 4.2 094-122 ٥ 1.46 4.2 ٥ 0 92 1.53 .D16 - 20 4.9 122-152 (- -EXTRACTABLE BASES 584A- -) ACTY (CAT EXCH) RATIO RATIO SATI DEPTH CORGANIC MATTER 1 IRON PHOS (BASE 6C2B EXT C/N 6N2E 602D 6P2B 6Q28 6H1A 6G1E 5A3A 5 F1 6A1A ORGN 6B1A 5A6A 8 D 1 8D3 5C3 SIM NHAC CA NITE TOTL NG NA BACL KCL EXTB NHAC SAT EXTB NHAC CARB **EXTB** NHAC FE TEA EXT ACTY ŤΟ ACTY PCT PCT (- - --MEQ / 100 G- -CLAY PCT CM PCT PCT PÇT 000-025 . 383 3.7 1.7 28.5 4.98 -O 2.5 9.4 025-038 038-053 1.1 1.5 14.5 16.0 1.54 3.7 16 1.91 -1 -2 . 39 -038 10 -8 3.1 5.7 9.4 - 66 2.8 22 31 053-074 4.0 TR 5.0 14.3 .39 074-094 -31 3.8 1.3 TR TR .2 5.3 4.4 10.5 3.3 15.8 12.3 .75 2.9 31 34 33 43 45 8.8 094-122 -26 122-152 DEPTH (SATURATED PASTE) MA SALT 805 GY P -) ATTERBERG 6F 1A BEL BC1B REST PH 4F1 4F2 LQID PLST 5E 8A 502 HZO ËŠP SAR TOTE MMHOS/ SOLU LMIT INDX OH M-PCT (- - - - - - - - MEQ / LITER - - - - - - -) PCT CM PCT 000-025 025-038 32A 10A 053-074 074-094 094-122 14000 4.5 30.5 .05 1.2 28A 5A 122-152 CLAY MINERALOGY (7A2C). 038-53 MT2 KK2 MI2 VRI 074-94 MT3 KK2 MI1 VRI 094-122 MT3 KK2 MI1 COMMENTS - CLAYS IN B AND C HORIZONS FAIRLY WELL ORDERED.

RELATIVE AMOUNTS - (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE.

MINERAL CODE - MT = MONTMORILLONITE MI = MICA KK = KAOLINITE VR = VERMICULITE. SAND MINERALOGY (781). 038-53 VFNS - NN71 074-94 VFNS - NN74 RU = RUTILE.

OBSERVATIONS ON NATURAL FABRIC WITH STEREOSCOPIC MICROSCOPE,

A26 038-053 CM 760199 DEFINITE DEPOSITIONAL CLAY IN CHANNELS, BARELY THICK ENDUGH TO OBSCURE MATRIX GRAINS WHICH

ARE PRINCIPALLY VERY FINE SAND AND COARSE SILT.

B216 053-074 CM 760199 DEFINITE CLAY/IRON DEPOSITION IN CHANNELS AND IN CRACKS (PROBABLE PED FACES). GRAINS

OBSCURED BUT SURFACE MORPHOLOGY OF MATRIX NOT SMOOTHED COMPLETELY. MATRIX IS THE SAME AS AZG.
074-094 CM 760200 DISTINCT CLAY/IRON DEPOSITITION IN CHANNELS, IN CRACKS, AND IN PATCHES THROUGH MATRIX, LESS
DISTINCT PATCHES OF DEPOSITIONAL CLAY THROUGH MUCH OF MATRIX, MATRIX IS SAME AS AZG.
EXPRESSION OF DEPOSITIONAL CLAY MORE PRONOUNCED WITH DEPTH. DEFINITE EVIDENCE OF CLAY MOVEMENT AND DEPOSITION.

Soil classification: Typic Umbraqualf; fine-silty, mixed, frigid.

Soil: Barronett taxadjunct*.

S75WI-95-4 . Soil No.:

Location: Polk County, Wisconsin; NWk, SWk, Sec. 22, T. 35 N., R. 15 W.; 150 feet south of road and 15 feet west of line fence. About 45°30' N. latitude and 92°13' W. longitude.

Climate: Humid continental; mean annual temperature is 43° F; mean July temperature is 71° F; mean January temperature is 11.8 F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days

(data from Amery, WI., weather bureau substation.)

Vegetation and land use: Native vegetation was water tolerant hardwoods, sedges, and grasses. Many of the larger areas of this soil have been partially drained and are used for livestock pasture and general farm crops. The sample site is in a grass meadow.

Parent material: Silty glacial lacustrine deposits.

Physiography: Depressional areas in glacial lake plains.

Topography: Depressional - site is on a I percent concave slope.

Drainage: Poorly drained.

Ground water: At 3 feet in July; at 4 feet in September.

Erosion: None.

Permeability: Moderately slow.

Described by: A. J. Klingelhoets and G. B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

Ap 760196 0 to 25 cm (0 to 10 inches). Black (10YR 2/1) mucky silt loam; moderate medium subangular blocky structure parting to very fine subangular blocky; friable; many roots; slightly acid; abrupt smooth boundary.

Al2 760197 25 to 38 cm (10 to 15 inches). Very dark gray (10YR 3/1) silt; weak medium platy structure; friable; many roots; slightly acid; clear wavy boundary.

A2g 760198 38 to 53 cm (15 to 21 inches). Grayish brown (10YR 5/2) silt; weak coarse platy structure; very friable; many fine prominent mottles of strong brown (7.5YR 5/6 and 5/8); few crawfish holes and sedge root channels; many roots; medium acid; gradual wavy boundary.

B21tg 760199 53 to 74 cm (21 to 29 inches). Grayish brown (2.5Y 5/2) silt loam; many medium prominent brown, strong brown, and yellowish red (7.5YR 4/4, 5/6, and 5YR 5/6) mottles; few penetrations of A2g material less than 10 mm thick are in the upper 4 inches of this horizon; many old sedge root channels and few crawfish holes; many roots; medium acid; gradual wavy boundary.

B22g 760200 74 to 94 cm (29 to 37 inches). Grayish brown (2.5Y 5/2) silt loam; many large prominent dark reddish brown and yellowish red (5YR 3/4 and 5/6) mottles; weak coarse prismatic structure parting to weak fine and medium subangular blocky; friable; many old sedge root channels and few crawfish holes; few sedge roots; medium acid; gradual wavy boundary.

94 to 122 cm (37 to 48 inches). Grayish brown (2.5Y 5/2) silt; many coarse prominent dark reddish brown (5YR 3/4) and yellowish red (5YR 5/6) mottles; weak coarse platy structure; friable; few sedge roots; silt shows evidence of layering; medium acid; abrupt smooth boundary.

C2 760202 122 to 152 cm (48 to 60 inches). Grayish brown (2.5Y 5/2) silt; many coarse prominent dark reddish brown (5YR 3/4) and yellowish red (5YR 5/6) mottles; weak coarse platy structure; friable; few old sedge root channels and crawfish holes; silt shows evidence of stratification; medium acid. C2 horizon separated for pur-

*This pedon is a taxadjunct to the Barronett series because it has a subsoil clay accumulation not typical of that series.

Additional notes:

- Some accumulation has thickened the surface soil on this site; questioned for coarse-silty versus fine-silty family and for cambic versus argillic Bg.
- 2. pH's in field determined by Truog Kit.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SON Bergland SOIL Nos. S64WI-16-2 LOCATION Douglas County, Wisconsin SOIL SURVEY LABORATORY Lincoln, Nebraska _ LAR. Nos. 19863-19870 June, 1968 GENERAL METHODS: lA, lBlb, 2A1, 2B Size class and particle diameter (mm) Sand Sift Course fragments 3B1 Silt Very Sand Clay Fine lat. III Depth Horizon Coarse Very fine Int. II 0.005 (2-1) Vol Wt. <0.074 0.002 L (in.) (2-0.05) (0.05<u>–</u> 0.002) (< 0.002) (1-0.5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-(2-0.1)a 19-2 19-2 of <19--2-0 Ωĩ 1.8 68.2 1.3 3.8 0-3 Al 30.0 0.2 0.2 0.3 0.6 0.5 5.8 24.2 6.6 tr 3-7 Blg5.5 20.1 74.4 0.1 0,5 0.9 2.3 1.7 1.2 18.9 4.3 95.4 9.4 tr 4.5 1.3 1.7 1.8 18.5 7-11 B2 3.1 20.9 76.0 \mathbf{tr} 0.2 0.4 1.2 2.4 1.8 12.2 tr 11-19 В3 4.3 21.0 74.7 0.2 Ю.3 0.5 1.6 2.9 18.1 2.6 96.7 11.5 9.4 tr 19-28 28-38 Clca 4.8 22.0 73.2 5.8 96.3 95.6 0.3 1.9 2.4 0.1 0.7 3.0 <u> 19.1</u> tr C2ca 5.1 2.8 22.4 1.0 72.5 0.2 10.6 13.5 2.1 1.2 20.0 3.9 tr 38-50 C3 22.0 1.4 75.2 0.4 1.1 2.1 14.9 0.1 0.7 20.6 2.7 97.6 tr 4D1 CIAF 6Ala 6Bla Carbonate **Bulk density** Water content рH 4B4 801s 4Ala | 4Alb 4B1c| 4B2 4C1 as Cacoa Non-4A1a Depth Organic Nitrogen C/N arbon Field-1/3-Air-COLE Field-1/3-15-1/3-to 6Elb| 3Ale (is.) carbon (1:1) ate State Bar Dry State Bar 15-Bar Bar 6E2a <00005 Clay <2mm Pct. mm Pet Pct. 2/CE E/CC g/cc Pct Pct Pct. 18.9 0.921 33.0 21 0.663 19 0.095 12 0.038 7 0-3 <u>3-7</u> 7-11 12.9 68 5.7 6.5 29.3 12 74 1.17 22.6 -(s) 0.27 76 22.6 6.9 11-19 0.16 tr(s)75 21.8 7.2 19-28 28-38 1.63 0.059 1.65 0.073 22.5 22.4 0.11 8 71 1.31 1.37 36.8 7.9 8.1 66 67 37.2 0.12 14 0.14 8 38-50 0.15 15 24.7 8.1 6Hla Cat.Exch.Cax Ext. 5A3a 5A1a Acidity Sum NH₄OAc Extractable bases 602a 8D3 ration 6N4b 604b | 6P2a 692a KCl-Ext. 5C3 5C1 Sum Ext. Ca/Mg Iron NHLOAC (lm.) Ça Mg Na Sum Catalons A] 8.8 Cation CEC Fe meg/100 Pct Pct. Pct 2-0 34.3 80.3 8.5 51.0 6.5 46.5 5.3 39.8 0-3 3-7 52.5 38.9 57 83 86 32.3b 12.90 0.3 0.5 46.0 0.7 2.5 88 26.7b 14.90 0.6 42.5 0.3 2.0 1.8 109 38.4 7-11 24.0 15.0 0.3 0.7 40.0 1.9 1.6 104 11-19 20.8 12.8 0.3 0.6 34.5 32.6 1.9 1.6 87 106 9.9 0.3 31.0 19-28 20.1 0.7 26.5 2.0 2.0 28-38 38-50 27.6 28.1 8,4 23.9 24.5 18.2 0.3 0.7 1.5 2.2 8.9 0.3 0.8 18.1 2.0

	Ratios	to Cla	à 8⊅5		
Depth (in.)	NH ₁₄ OAc	Ext.	15-Bar Water		
2-0					
0-3	0.77	0.01	0.43		
3-7	0.53	0.03	0.31		
7-11	0.51	0.03	0.30		
11-19	0.43	0.03	0.29		
19-28	0.37	0.03	0.32		
28-38	0.36	0.02	0.34		
38-50	0.37	0.02	0.37		
			ļ		
			1		
			1		
	i	l	ı	I	I

Fe-Mn nodules comprise 10 to 20 percent of the sands above 19 inches. Carbonate comprises 10 to 20 percent of the sands below 19 inches.

NH, OAc extraction (Method 6N2a).

c. NHuOAc extraction (Method 602a).

Soil classification: Aeric Haplaquept; very-fine, mixed, nonacid, frigid.

Soil: Bergland.

Soil No.: 864WI-16-2.

Location: Douglas County, Wisconsin; NWK, NWK, Sec. 17, T. 48 N., R. 13 W.; 325 feet south of the road. Climate: Humid continental; mean annual temperature is about 41° F; mean annual precipitation ranges from

26 to 30 inches; and frost-free season is about 109 days.

Vegetation and land use: Native vegetation was mixed spruce-pine forest. A small part of this soil has been cleared for general livestock farming. Much of this soil has been logged and is in second-growth aspen, tag alder, and willow brush.

Parent material: Calcareous clay lacustrine or glacial till.

Physiography: Slight depressional areas and drainageways on gently undulating lacustrine or till plain.

Topography: Site is in a slight depression with a 1 percent concave slope in an old pasture.

Drainage: Poorly drained.

Ground water: A perched water table exists at or near the surface for several months in most years.

Erosion: Slight.

Permeability: Very slow. Described by: A.J. Klingelhoets, August 25, 1964.

(Colors are for moist soil unless otherwise stated)

01 19863 5 to 0 cm (2 to 0 inches). Very dark brown (10YR 2/2) organic mat of fine roots, sedge, moss, and leaf litter.

Al 19864 0 to 8 cm (0 to 3 inches). Black (2.57 2/0) silty clay moderate medium premular atmosphere frieble.

very high organic matter content; many fine roots; slightly acid; clear wavy boundary.

Blg 19865 8 to 18 cm (3 to 7 inches). Grayish brown (2.5Y 5/2) clay; moderate fine angular blocky structure; very firm, plastic, sticky; many fine prominent mottles of strong brown (7.5YR 5/6); thin patchy clay films; roots common; slightly acid; gradual irregular boundary.

B2 19866 18 to 28 cm (7 to 11 inches). Reddish brown (5YR 4/4) clay; weak coarse prismatic structure parting to strong very fine angular blocks; very firm, plastic, sticky; many fine distinct mottles of strong brown and brown (7.5YR 5/6 and 5/2); thin continuous clay films; roots common; mildly alkaline; gradual wavy boundary.

B3 19867 28 to 48 cm (11 to 19 inches). Reddish brown (2.5YR 4/4) clay; weak coarse prismatic structure parting to moderate very fine angular blocks; very firm, plastic, sticky; few fine faint mottles of strong brown (7.5YR 5/6); thin continuous clay films; roots common; mildy alkaline; clear wavy boundary.

Glca 19868 48 to 71 cm (19 to 28 inches). Reddish brown (2.5YR 4/4) clay; weak coarse prismatic structure parting to moderate fine angular blocks; very firm, plastic, sticky; few pinkish gray (5YR 7/2 and 6/2) soft lime segregations less than 10 mm in diameter; clay films prominent on pressure faces along vertical cracks and old root channels; few sedge roots; strong effervescence; gradual wavy boundary.

C2cs 19869 71 to 97 cm (28 to 38 inches). Reddish brown (2.5YR 4/4 to 5/4) clay; moderate fine angular blocky structure; very firm, plastic, sticky; prominent slickensides with thick clay films on pressure faces; few pinkish gray (5YR 6/2) soft lime segregations less than 10 mm in diameter; some lime coatings with a greenish cast along old root channels and vertical cleavage planes; few sedge roots; strong effervescence; gradual wavy boundary.

C3 19870 97 to 127 cm (38 to 50 inches). Reddish brown (2.5YR to 5YR 4/4) clay; moderate coarse subangular blocky structure parting to moderate fine angular blocks; very firm, plastic, sticky; slickensides with thick clay films are prominent; some lime coatings with greenish gray (5G 5/1) colors are on the slickenside faces; strong effervescence.

Remarks: This profile is in a very fine family. Sand content is low and clay content is high. At time of sampling, a perched water table existed at the bottom of the B3 horizon and the entire solum above was saturated.

Soil temperatures: Depth (inches) Temperature 10° C. 8° C. 8° C. 20 30 40

SOIL Being land _ LAB. Nos. _ 19871-19879 June, 1968 SOIL SURVEY LABORATORY Lincoln, Nebraska GENERAL METHODS: 1A, 1Blb, 2Al, Size class and perticle diameter (mm) 3A1 Total Coarse fragments 2A2 Sand Sitt 381 **3B2** Very Medium Fine Int. III Horizon Sand Sitt Clay Coarse Very fine int. 33 0.005-Vol Wt. coarse (2-1) (2-0.05) B. (0.05<u>-</u> 0.002) <0.0740.002 (in.) **=** 0.002) (1-0.5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-(0.2-0.02) (2-0.1)19-2 19-2 Pct. of 49 Pct. of < 2 mm 01 1-0 0.4 2.4 0-4 Al 0.9 31.9 67.2 0.1 0.2 4.1 27.8 4.6 99.2 11.9 0.9 4-8 Blg 5.8 33.3 60.9 0.8 1.4 4.2 74.0 0.3 29,1 7.0 4.4 8-12 B21g 24.7 0.3 0.4 0.2 23.0 1.1 74.2 tr 1.7 2.1 0.9 99.0 _ 12-19 B22 0.7 32.4 66.9 0.1 0.2 0.2 0,2 0.7 31.7 1.0 0.5 99.4 _ 34.9 64.6 <u>33.6</u> 19-24 F.F 0.2 99.6 0.5 1.r b.2 1.6 0.3 24-34 32.1 66.7 0.4 0.5 0.6 31.7 20.1 Clea 1.2 0.3 b.1 0.2 1.2 98.8 34-48 48-60 0.8 0.2 0.2 68.9 0.1 29.2 18.6 0.6 99.3 24.0 _ _ C2ca. 30.3 0.1 1.1 ¢3 0.5 20.0 79.5 0.1 1.4 0.4 99.5 3A1b Bulk density 6Ala 6Bla Carbonate 4D1 Water content pH 3Ala 4B4 4Ala | 4Ald 4Alb |4Blc | 4B2 4C1 Fine 8c1a as CaCO2 Non-Nitrogen Depth Organic C/N 1/3-tc Field-1/3-Air-COLE Field-1/3~ 15-Clay Sat. 6Elb | 3Ala arbor carbon (1:1) (In.) State State Bar Bar 0.0002Paste Drv Bar 6E2a k0.002 ate mm. Clay Pct. ≪2mm. Pct. mm. Pct Pct Pet Pct. **g/c**c Pct. 39.6 1.057 16 1-0 16.7 9.58 30.7 5.3 5.7 0-4 0.643 15 67 21.6 4-8 2.55 61 22.8 29.2 8-12 0.33 tr(s) 7.0 **74** 67 0.18 tr(s).30 1.33 1.70 0.087 35.9 30.8 22.0 0.12 7.3 12-19 1.34 1.42 1.35 0.064 32.7 1.62 29.5 21.7 0.11 65 60 19-24 7 0.16 1.65 29.0 22.8 0.09 8,2 15 24-34 0.14 33.7 35.8 31.7 34.4 34-48 48-60 1.38 0.13 7.6 8.2 16 69 1.39 1.64 0.059 22.2 0.12 9 8.2 24.8 0.13 0.15 1.62 0.073 Base saturation 5B1a 6Hla Cat.Exch.Cap.6Gld 602a 8E1 8Bla 8B 805 8D3 Extractable bases 6N4b 5A3a 5A1a KC1-Ext. Resis-Elec. tivityCond. Water Est. 503 5C1 604b | 6P2a Ext. 602a Total ¢a/Mg Sum NH_LOA at Acidity Sum NH4OAc Ext. Iron (In.) Cations Falt in ettions ĊĒC Ca Mg Na ĸ Sum Al as Sat. Fe bhmsmahos Soil Pct. neq/100 j Pct. cm. cm, Pet DOM. 1-0 38.5 15.8 1.6 46 71 0-4 20.0ъ 12.4c 0.2 0.8 33.4 46.8 0.4 48.5 35.1 38.4 4-8 13.6c 0.2 32.7 2,500 0.37 57.4 240 67 . <u>93</u> 18.35 5.9 3.6 1.9 1.1 87 18.7c 0.4 21.2ъ 0.8 41.1 8-12 9i 104 0.4 39.2 34.1 1.1 17.8 16.8 0.6 35.6 1.7 12-19 <u> 19-24</u> 18.0 14.6 0.4 0.6 <u> 33.6</u> 30.2 1.2 24-34 0.5 3Ö.4 1.5 1.4 17.0 12.5 0.4 25.9 5,000 0.45 60.0 290 34-48 15.1 11.8 0.4 0.6 27.9 23.7 1.3 <u>1.6</u> <u> 29.1</u> 48-60 15.6 12.3 0.4 0.8 24.0 1.3 Ratios to Clay 8D2 Fe-Mn nodules comprise a major portion of the sands above 19 inches. a. Depth NH_LOAc Ext. 15-Ba: Carbonate comprises a major portion of the sands below 19 inches. (In.) Iron Water NHuOAc extraction (Method 6N2a). CEC þ. NHLOAc extraction (Method 602a). c. 0.02 0.46 0-4 0.70 8سنا ن بهر هجـه 0.35 8-12 0.51 0.03 0.31 0.33 0.51 0.03 12-19 0.03 <u> 19-01</u> ስ ዜና 0.34 0.38 24-34 0.43 0.02 34-48 0.34 0.02 0.32 റ്റു ŭ8-60 0.33 0.32

___ SOIL Nos. S64WI-16-4 LOCATION Douglas County, Wisconsin

Soil classification: Aeric Haplaquept; very-fine, mixed, nonacid, frigid.

Soil: Bergland.

Soil No.: 864WI-16-4

Location: Douglas County, Wisconsin; NWs, NE's, Sec. 25, T. 48 N., R. 14 W; 400 feet east and 400 feet south of

junction of county roads A and C.

Climate: Humid continental: mean annual temperature is about 41° F; mean annual precipitation ranges from 26 to

30 inches; and frost-free season is about 109 days.

Vegetation and land use: Native vegetation was mixed spruce-pine forest. Much of this soil has been logged and is in second growth aspen, tag alder, and willow brush. Small areas have been cleared for general livestock farming.

Parent material: Calcareous clay lacustrine or glacial till.

Physiography: Slight depressions and drainageways on gently undulating lacustrine or till plain.

Topography: Site is in a slightly depressed area on a 1 percent concave slope.

Drainage: Poorly drained.

Ground water: A perched water table exists at or near the surface for several months in most years.

Erosion: Slight.

Permeability: Very slow.

Described by: A.J. Klingelhoets, August 26, 1964.

(Colors are for moist soils unless otherwise stated)

Ol 19871 3 to 0 cm (1 to 0 inch). Very dark brown (10YR 2/2) organic mat of fine roots, sedge leaves and stems, and leaf litter; slightly scid.

19872 0 to 10 cm (0 to 4 inches. Very dark gray (2.5Y N3/) silty clay; moderate fine granuler structure; friable; very high in organic matter content; many fine roots; slightly acid; clear wavy boundary.

Blg 19873 10 to 20 cm (4 to 8 inches). Very dark gray to dark gray (5Y 3/1 to 4/1) clay; moderate fine angular blocky structure; very firm, plastic, sticky; few fine prominent mottles of strong brown (7.5YR 5/6); thin patchy clay films; roots common; slightly acid; gradual irregular boundary.

B21g 19874 20 to 30 cm (8 to 12 inches). Reddish brown (5YR 4/4) clay; weak coarse prismatic structure parting to strong very fine angular blocks; very firm, plastic, sticky; many fine distinct mottles of strong brown and brown (7.5YR 5/6 and 5/2); few dark gray and very dark gray (5Y 4/1 and 3/1) tongues, less than 10 mm in width at the top, extend through this horizon; thin continuous clay films: roots common: mildly alkalina; oradial wave houndary

30 to 48 cm (12 to 19 inches). Reddish brown (2.5YR 4/4) clay; weak coarse prismatic structure parting to strong very fine angular blocks; very firm, plastic, sticky; few fine distinct mottles of strong brown (7.5YR 5/6); thin continuous clay films; roots common; mildly alkaline; clear wavy boundary.

19876 48 to 61 cm (19 to 24 inches). Reddish brown (2.5YR 4/4) clay; weak coarse prismatic structure parting to moderate very fine angular blocks; very firm, plastic, sticky; few patchy dusky red (2.5YR 3/2) organic stains on vertical faces of peds along structural cracks; thin continuous clay films; roots common; mildly alkaline; clear wavy boundary.

Clcs 19877 61 to 86 cm (24 to 34 inches). Reddish brown (2.5YR 4/4) clsy; weak coarse prismatic structure parting to moderate fine angular blocks; very firm, plastic, sticky; many light reddish brown (5YR 6/3) soft lime segregations less than 10 mm in diameter; few hard lime concretions less than 2 mm in diameter; few dusky red (2.5YR 3/2) organic stains along large vertical structural cracks; thin continuous clay films; few sedge roots; strong effervescence; gradual irregular boundary.

C2cs 19878 86 to 122 cm; (34 to 48 inches). Reddish brown (2.5YR 4/4) clay; moderate fine angular blocky structure; very firm, plastic, sticky; prominent slickensides with thick clay flows on pressure faces; many pinkish gray (5YR 6/2) soft lime segregations less than 10 mm in diameter; few dark reddish brown (5YR 2/2) mottles or organic apots less than 2 mm in diameter; some lime coatings with greenish gray (5G 5/1) colors occur on the slickenside faces; few sedge roots and old root channels; strong effervescence; clear wavy boundary.

C3 19879 122 to 152 cm (48 to 60 inches) Reddish brown (2.5YR 4/4) clay; moderate coarse subangular blocky structure parting to moderate fine angular blocks; very firm, plastic, sticky; slickensides with thick clay films are prominent; greenish gray (5G 5/1) lime coatings occur on some of the slickenside faces; strong effervescence.

Remarks: This profile is in a very fine family. Sand content is low and clay content is high. At time of sampling a perched water table existed at the bottom of the B3 horizon and the entire solum above was saturated.

Soil	temperatures:	Depth	
		(inches)	Temperature
		20	11° C.
		30	10° C.
		40	10° C.

COUNTY - - - LANGLADE

SOIL NO - - - - - S74WI-67-1

GENERAL METHODS- - -1A,1818,2A1,28

SAMPLE NOS. 74L835-74L840

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MYSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

DEPTH	HORI		/					DARTIC	E S 7 7 8	BMAIN	/ C T C	T 2MM	341						
DEFIN	nuk I	LUN				FINE CLAY LT .GOO	(SAND -		213.	. (-SILT-	24 1A 1) 3A18	INTR	FINE	NON-	/KAII 8D1
			SAND	SILT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFNS	COSI	FNSI	VFSI	SAND	11	CLAY	CO3-	15-
			2	.05-	LT	LT	2-	1-	•5-	-25-	-10-	-05	-02	.005	- 2-	+ 2 -	TO	CLAY	BAF
CH			(•#3 PC1	LT 21	(M		00Z		10	02	GLAY Det	PCT	CLAY
00-010 10-020																			
20-051																			
51-089																			
189-104	2C1		8.2	84.6	7.2		-0	.3	1.2	2.3	4.4	40.6	44.0		3.8				. 97
104-140	2026		11.7	73.3	15.0		.0	.7	2.0	2.8	6.2	39.2	34.1		5.5				.88
EPTH ((PART I	CLE SI	ZE AN	ALYSIS	. MM.	38. 381) (BU	LK DENS	ITY I	(WATE	ER COI	YT ENT-) CARBI	NAT E	(P)	
	VGL.	(WE	IGHT -			4A10	4A1H	401	4B1C	4B1C	48.2A	4C1		6E18	BALA	BCLA	8C1
	91	75	19-2	0 20-5	2-2	074	PCT	1/3-	DBA	CULE	1/10	1/3-	840	CM		L 1	-003	1/1	CAC
CM	PCT	PCT	(- PCT I	LT 75	LT .074	LT20	6/CC	G/CC		PCT	PCT	PCT	CM		PCT	PCT	NZU	UAU
	•		0	0	0		C						133						, <u>-</u>
10-02G	_C	Q	G	0	_0		_0						112					3.4	2-
20-051	TR,	. 0	0	o o	TR		TR	.19			441 538	372	122	-61				3.6	
20-010 20-020 20-051 251-089	IR To	C	0	0	IR To		TR Tr	.21	.56		238	4/3	111 7.0	•90				3.8 4.1	3. 3.
189-104 104-140	TD	6	Ö	ñ	TR		TR						13.2					4.0	3.
.04-140	• •	٠	v	٠			- ' '												
EPTH (C	RGANIC	; FATI	rea)	IRCN	PHCS	(E)	TRACT	ABLE B	ASES 58	441	ACTY	AL	CAT	EXCHI	RATIO	RATIO	CA	IBASE	
			C/N	6C 2B		6N2E	602D	6P2B	6928		6H1A	661E	5A3A	5A6A	8D1	8D3	5F1	5C 3	
	ORGN	NITE		EXT	TOTL	CA	MG	NA	K	SUM	BACL	KCL	EXTB	MHAC	NHAC	ÇA	SAT	EXT B ACTY	NHA
CM	CARB PCT			FE PCT	PCT	(E) 6N2E CA			MEQ	/ 100	Ğ		- +		CLAY	MG	PCT	PÇT	
00-010 10-020 20-051 51-089	53.7	1.10	49						2.6 .6 .1										
10-020	50.8	1.59	32			7.8	2.3	.2	. 6	10.9	118		129	91.8		3.4	8	8	1
20-051	47.4	2-26	21			3.4	1.0	.1	.1	4.6	157		162	96.8		3.4	4	3	
51-089	52 -6	2.58	20			1.7	- 5	•2	.0	2.4	160		162	104		3.4	2	1	
89-104	1.60	+085	7 2 2			-2	-1	•1	+1	•>	22		22.5 14.3	12.8		2.0	Z	2	-
04-140	.37	.025	15			1.6	.7	•1	TR	2.4	11.9		14.3	12.0		2.3	13	17	2
EPTH (SATURA	ATED P	ASTE	 NA	NA NA	SALT	GYP						EXTRACT	8A1-			}	ATTER	ERG
	8E1 8		8.8	502	5E		6F1A	BALA	6N 1B	6Q1B	6P1B	6018	6IIA	6J1A	6K1A	6LlA	6MLA	4F1	4F2
	REST	PH	H2C	ESP	SAR	TCTL		EÇ	CA	MG	NA	K	CO3	HCO3	CL	\$04	NG3	FGID	PLST
	OHM-					SOLU	'	MHOS/										LMIT	INDX
CH	CK		PCT	PCT		PPM						MEG /							
00-010	7400	3.3	1020			650 330 50		.21	- 2	•2	-2	-4		7.6	.2	-7	-0		
10-020		3-2	1020			330		.17	•\$	•1	.1 TR	-1	Ö	4.9		-0	.0		
20-051 51-089		3.3 3.8	741 878			90		.12	.l Tr	16	TR	.0	ň	2.4	.0	.0	.0		
189-104		4.4	49					.04	TR	TR	:î	ŤŘ	ŏ	2.1	.2	.7	-0		
G4-14C		3.7	43					.02	TR	TR	ŤŘ	•0		1.8	.0	.9	.0		
						-HISTOS	CI CH		DI PAT IO							· <u>-</u> -			
EPTH	•	(STAT	re of i	DECOMPO	OSITIO	N) PH	(BU	LK DEN) COLE	SUBS	(WATER	CONTE	π	3				
	RF		AG	1	BM	8C 16	443	441	I 4D1		484	4810	C 482	9 4C	1				
	MINL	(FIBE	ER VOL) PYRO	PHOSPH	T .01A	ı <u>Fil</u> l	1/3	B RE-	RES-	FILC	1/38	15-	WR	9				
CM	CONT	UNRE	RUB PCT	SOLUE	BILITY S COLO	CAÇI R)	. STA	T REW	F WET	PÇT		REWI							
00-C1C		····	65		R 7/4							*	133						
		64			R 6/4	2.9							83.9	•					
110-227	7		4		R 4/2		.1	8		93 84	503		72.7						
10-020										84			68.						
20-051			7	7.51	R 4/4	3.3	- 10	•		97	508		90.	•					
			7	7.541	R 4/4	3.3	.1	•		97	208		5.1 7.1	ì.					

Soil classification: Terric Borosaprist; loamy mixed, dysic.

Series: Beseman (sampled for Merwin but fiber content when rubbed was too low).

Pedon No.: 574WI-67-1.

Location: Langlade County, Wisconsin; SW4, SE4, Sec. 18, T. 33 N., R. 11 E.; 280 feet north of town road and 1,000 feet east of Hwy. B. About 45.2 deg. north latitude and about 89.0 deg. west longitude. Climate: Humid continental. Mean annual temperature is 42.2° F; mean July temperature is 68.5° F; the mean January temperature is 13.8° F. Mean annual precipitation is 29.86 inches with nearly 2/3 of this during the growing season. Total annual snowfall is 48 inches. The frost-free season is 138 days at Antigo but less on the organic soil areas.

Parent material: Organic soil material derived primarily from grasses, reeds, and sedges over silty deposits of lacustrine or losss derivation.

Physiography: Shallow depression in a large glacial outwash plain; area is nearly level and local relief is less than 5 feet. Elevation is about 1,550 feet.

Vegetation: Overstory of black spruce and tamarack; understory of Labrador-tea, leatherleaf, cranberry,

blueberry, sphagnum moss. Size of area: Approximately 300 acres.

Microrelief: Low hummocks of 6 to 18 inches over entire area. Subsidence: Slight; some areas appear to have been burned, leaving shallow pits less than I foot in depth. Soil temperature: Measured soil temperature of 7.5° C. at 50 cm. Described and sampled by: G.W. Hudelson, A.J. Klingelhoets, G.B. Lee, Warren Lynn, W.E. McKinzie, R. Newbury, and S. Payne on August 6, 1974. Samples were obtained from a pit dug with a spade.

> Mat of living sphagnum with many live roots of ground cover species about 5 cm thick. (Not sampled)

74L835 0 to 10 cm. Dark brown (10YR 4/3) broken face fibric material, yellowish brown (10YR 5/4) rubbed, and very pale brown (10YR 7/3) pressed; fiber content about 80 percent undisturbed, 35 percent rubbed; matted structure; friable; sphagnum fiber with a small percent (less than 15 percent) of herbaceous material; many fine roots; less than 5 percent mineral material; pH 4.0 (Truog); clear smooth boundary.

74L836 10 to 20 cm. Dark grayish brown (10YR 4/2) broken face, hemic material, very dark grayish brown (10YR 3/2) rubbed, and grayish brown (10YR 5/2) pressed; about 65 percent fibers undisturbed, about 25 percent rubbed; very weak coarse platy to matted structure; very friable; mixed herbaceous and moss fibers; many fine roots; about 15 percent mineral material; pH 4.2 (Truog); clear wavy boundary.

20 to 51 cm. Very dark brown (10YR 2/2) broken face sapric material, dark brown (7.5YR 3/2) rubbed and pressed; about 70 percent fibers undisturbed, about 12 percent rubbed; weak fine and medium subangular blocky structure; very friable; dominantly herbaceous material; few sedge and shrub roots; about 25 percent mineral material; a 2-inch layer of woody material occurs at about 50 cm depth, wood fragments are dark brown (7.5YR 4/4) and appear to be dominantly tamarack and spruce remains; pH 4.2 (Truog); gradual wavy boundary.

51 to 89 cm. Dark brown (7.5YR 3/2) broken face, rubbed and pressed sapric material; about 50 percent fibers, about 10 percent rubbed; weak fine and medium subangular blocky structure; very friable; dominantly herbaceous material with 25 percent mineral material; few sedge roots; pH 4.2 (Truog); clear wavy

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, HTSC MATIONAL SOIL SURVEY LABORATORY LINCOLN, MEBRASRA

SOIL WO - - - - - 572WI-21-4

COUNTY - - - FOREST

GENERAL METHCDS - - - 12, 1818, 221, 28

SAMPLE NOS. 721835-721842

DEPTH	HORI	ZOR	(PARTIC	LE SIZ	B ANAL	ISIS.	LT 2M	. 341.	3414.	311R				RATI
				****		PINE	(+	SAND	+ -) (<u>-</u>	-SILT-	1		IFTR	PINE	AOR-	8D
			SA NU	SILT	CLAI	CLAY	A COS	CORS	# EDS	PNES	VFRS	COS	. PNSI	ALZI	SAND	11	CLAY	CO3-	15
				.002	. 002	TT	, 1	17	25	- 25-	-10-	.03	.02 .002	.003	- 4-0	• 4-	CTAV	CLAY	BA:
CH			('						50	T 15 T 20	0						PUT	PCI	C Last
15-0	01												~						
00-26	A2		75-0	21.8	3.2	. 2	5. 3	12.5	18. A	27.6	10.8	12.3	9.5		64.2	26. 5	6		٠,
26-40	B210	3	53.2	40.0	6.8	2. 1	2.6	8.1	12.4	20.0	10.1	17.3	22.7		43.1	37.6	31		
40-59	B22ta	er e	68.0 69.9	17.3	14.7	9.4	3. 5	8.8	16.9	26.8	12.0	9.9	9.5 22.7 7.4 7.9 8.3		56.0	35.1	64		
59-87	B23t	Š	69.9	19.7	10.4	6, 2	2.3	9.4	19.2	27.3	11.7	11.0	7.9		58.2	36.4	60		
87-117			72.2				5.0	12.0	19.3	24.9	11.0	11.2	8.3		61.2	33.8	57		. 1
17-147				34.3		3.1	9.4		13.7	1/./	13.4	18.0	13.5		46.9 67.1	40.6	57		•
47-175	C2		76.6	15.9	7.5	2.8	6.3	15.3	21.6	23.9	9.5	8.	7.5		67.1	28.1	37		•
 RPT H	/DARTT		 T2 R & N i	LVSTS									ER COR						
	VOL.	(- VE	IGBT -	77.) 44 1D	4318	401	4B1C	4 810	4B2 15+ BAR PCT	4C1		6 E 1 B	3414	8C1A	8C
	GT	GT	75-20	20-5	5~2	LT	20+2	1/3+	OVEN	COLE	1/10	1/3-	15→	WRD		LT	LT	1/1	1/2
Cif	PCT	75 PCT	(PCT :	LT 75)	PCT LT20	BAR G/CC	DRY G/CC		BAR PCT	PCT	BAR PCT	CB/		PCT	.002 PCT	H20	CA
15-0					0								3.7 2.5 5.9 4.3 3.4 1.9 2.1					3.7	 3.
00-26	5	ň	TŘ	3	ŭ	28	ž	1.103					3.7					5.4	4
26-40	2	ō	TR	TR	3	50	3	1.86	1.89	.005	16.1	15.0	2.5	. 23	7.0	В		6.4	
40-59	5	ō	TR	2	5	35	7	1.87	1.94	.012	15.7	14.2	5.9	. 15	2.8	3		7.0	6
59-87	6	0	TR	2	6	33	8	1.85	1.90	.008	16.2	14.1	4.3	. 17	1.9	3		6.9	6.
87-117	8	0	TR	4	7	30	11	1.91	1.95	- 006	14.6	11.8	3.4	. 15	2.1	8		7.2	6,
17-147	10	TR	5	4	5	40	10	1.901					1.9					7.7	7. 6.
EPTH (6111 ORGN CARB	6 P1 A NITG	C/N	6C2B EXT	TOTL	(E) 6 H2 B CA	TRACI 6020 NG	ABLE B. 6P2B WA	ASES 5: 6028 K	841) Sue Byte	ACTY 681A BACL	AL 6G1E KCL EYT	(CAT 5131 EXTE ACTY	EXCH) 5 a 6 a NH ac	BATIO BD1 NHAC	RATIO 8D3 CA	CA 5P1 SAT NEAC	(BASI 5C3 EXTB ACTY	SAT SC'
	PCT			PCT	PCT				ns	2 / 100					CLAI			PCT	
15-0 00-26	41.4	1.22	34 7 22 6 2	3		2 3	1 /	.1		3.5	5.8		9.3	6.9	2.2	2,3	33	38	
26-40	- 12	.00	6			2.1	1.0		Ţ,	3.3	2.2	•••	5.5	3.8	. 56			60	ĩ
40-59	.08	.01	2	. 8		6.0	3.4	1	.2	9.7	2.4		12.1	9.4	- 64	1.8		80	10
5 9- 87	-07			.7		4.5	2.4	. 1	. 2	7.2	1.6		8.8	6.8	. 65			82	10
87-117	.04			1.0		4.0	2.0	.1	. 2	6.3	1.3		7.6	5.9	.71		68		10
17-147	-04			.6		4.3	2.5	. 1	- 1	7.0	• 9		5.5 12.1 8.8 7.6 7.9 5.5	3.9	.72		110	89	13
																1.7	116	87	19
EPT E	(SATUR)	T ED	PASTE)	NA	NA	SALT	GYP	(SATUR	ATION	BITRACT	82 1-)	ATTERE	ERG
	8E1 8	C 1B	81	5D2	58	8D5	6P11	821A	6 M 1 B	601B	6 P 1 B	6Q1B	6I1A	6J 1 🛦	6K1A	6L1A	681 <u>1</u>	4F1	412
	REST	PH	830	462	CAR	ጥበተቸ		BC	CA	H G	AY	ĸ	CO3	HC03	CL	504	NO3	LQID	
	OH#-					SOLU		MHOS/	_				/ LITER					LHIT	IND
CH	C#		PCT	PCT		PPE	PCT	CH.		,		- 220	/ LITER	·)	PCT	
5+0 0-26 6-40 0-59 9-87 17-117	6300	6.9	18.2					.30											

ESTIBATED. HTCRA-DEFFRATION RESISTANCE. A ROD O.6 CM IN DIAMETER IS SLOWLY PUSHED INTO BULK DENSITY CLOD. ROHTLIBERTED AT

Soil classification: Typic Ochraqualf; coarse-loamy, mixed, frigid.

Soil: Cable taxadjunct*.

Soil No.: S72WI-21-4 (LSL Nos. 72L835-72L842).

Location: Forest County, Wisconsin; NWA, SWA, Sec. 32, T. 38 N., R. 12 E.; in Argonne Experimental Forest near

State Highway 32.

Climate: Humid continental; mean annual temperature is about 40° to 45° F: mean annual precipitation is about

30 inches; and frost-free season is about 130 days.

Vegetation and land use: Native vegetation was primarily deciduous forests, with elm and ash predominating. Most of this soil is in forest. Small areas are used for pasture. When drained, small grain

44- 544 14-

Physiography: Depressional areas in glacial ground moraine.

Topography: Site is on a 1 percent slope in a depressional area.

Drainage: Poorly drained.

Ground water: Near the surface during wet seasons.

Erosion: Slight.

Permeability: Moderate.

Described by: Steve Payne and Robert Fox.

Sampled by: Robert H. Jordan and Robert L. Juve, September 18, 1972

(Colors are for moist soil unless otherwise stated)

01 72L835 15 to 0 cm (6 to 0 inches). Black (5YR 2/1) organic matter; many roots; the horizon is hemic to fibric in nature; strongly acid; abrupt boundary.

72L836 0 to 26 cm (0 to 10 inches). Dark grayish brown (10YR 4/2) light sandy loam; weak medium subangular blocky structure; very friable; this horizon is a mixture of 10YR 4/2 and 10YR 3/2; roots common; few medium size gravel; thickness of the horizon ranges to about 32 cm in some places; strongly acid; clear wavy boundary.

B21g 72L837 26 to 40 cm (10 to 16 inches). Grayish brown (10YR 5/2) sandy loam with many coarse prominent mottles of strong brown (7.5YR 5/6); weak fine platy structure; firm, brittle, weakly comented; few fine gravel; slightly acid; clear wavy boundary.

B22tg 72L838 40 to 59 cm (16 to 23 inches). Dark grayish brown (10YR 4/2) sandy loam with many fine faint mottles of brown (10YR 5/3); weak medium platy structure parting to weak fine subangular blocky structure; firm, brittle, weakly cemented; no roots; wide range of thickness of this horizon; neutral; clear wavy boundary.

B23tg 72L839 59 to 87 cm (23 to 35 inches). Dark grayish brown (10YR 4/2) heavy sandy loam with common medium faint mottles of brown (10YR 5/3) and distinct mottles of dark yellowish brown (10YR 4/4); weak medium subangular blocky structure; friable; neutral; gradual wavy boundary.

B3s 721.840 87 to 117 cm (35 to 47 inches), Dark eray (10YR 4/1) sandy loss with common fine prominent mottles of

SOIL NO - - - - - 575WI-95-8 COUNTY - - - POLK

GENERAL METHODS- + -14,1818,241,28

SAMPLE NOS. 760225-760232

DEPTH	HORIZ	ON				FINE	(SAND	,)(-SILT-		1	INTR	FINE	1 NON-	801
			SAND	SILT	CLAY	CLAY	vcos	CORS	MEDS	FNES	VFNS	COSI	FNSI	VFSI	SAND	11	CL AY	CU3-	15-
			2- -05	-05-	-002	. 0002	, 2- , 1	1- -5	. 5-	. 25-	-05	.05	-002	-005	- 2- -10	-02	CLAY	CL AY	BAR
91			1					<u>- ~"í</u>	_ <u>- P</u> C	T 17 21	um'-'-						J. PCT.	Pr T_	حبي۸
_																			
00-020	AP		18.5		8.3	. 7	.1	1.0	1.9	2.8	12.7	43.0	30.2		5.8	57.2	8 24 42 42 44 44 45		.8
20-028 28-036			15.7	75.4	8.9 20.0	2.1	•1	.5	1.1	1.7	12.3	44.7	30.7		3.4	58.0	24		.3 .4
36-061	BEAL				22.0	9.3	:1	.2	.3	1.1	11.1	40.2	25.0		1.7	52.0	42		
61-081	BEA2		12.8	67.7	19.5	8.6	-0	.1	.3	.9	11.5	43.3	24.4		1.3	55.4	44		.4
81-099				66.3 65.7	19.6	8.6	-0	•1	-1	9	13.0	41.9	24.4		1.1	55.7	44		.4
199-119 19-152			13.1			8.7	.1	.3	.5	1.3	10.9	40.9	26.7		2.2	52.8	45		.4
													·						
EPTH :	(PARTICI	F 21	LE AN	LY515:	, MM, : GHT ++	36, 36)	., 3B2)	LK DEN 4aih	401 401	4RIC	WAI - 481C	ER CU 4R2	AC 3		CARB 6518	STAND	4C1A	8C1
	GT (ST .	75-20	20-5	5-2	LT	20-2	1/3-	OVEN	COLE	1/10	1/3-	15-	WRD		LT	LŤ	1/1	1/2
CM	VOL. (- GT (2 PCT	75 PC T	t	· PCT I	T 75	.074	PCT	BAR G/ CC	DRY G/CC		BAR	BAR PC.T	BAR PCT	CM/		2 PCT	-002 PCT	H2Q	CAC
00-070	0 0 0 0 0 0 TR		·		0	92	0	1.30	1.41	-012		27.4	7.2					6.7	
20-028	ŏ	ŏ	ō	ŏ	ō	95	ŏ	1.65	1.66	.012		16.4	3.3	.22				6.6	6.
28-036	٥	0	Ö	0	ō	96	0	1.60A					7.9					6.3	
36-901 41-081	0	0	ò	0	0	97	0	1.50	1.56	-017		22.0	8.6	.21 .20				5.1 5.0	
81-099	ŏ	õ	ŏ	ă	ŏ	97	ŏ	1.50A		****			8.6					5.1	
99-119	TR	0	o	0	TR	96	TR	1.50	1.57	.016		22.4	8.4					5.2	
19 152	0	0	0	0	0													5.2	4.
EPTH (C	RGANIC				PHOS	(E)	TRACT	ABLE 6	ASES 5	B4A	ACTY	AL	(CAT	EXCH)	RATIO	RATIO	ĊA		
	6Ala				7071	6N2E CA	602D	6P2B	6Q2B	e 1 100	6H1A	6G1 E	5A3A	SAGA	801	8 D 3	5F1	5C 3	
	CARB	4116		EXT FE	1011	CA	76	MA	•	EXTE	TEA	EXT	ACTY	MINE	TD	TO	SAT	EXT8 ACTY	NHA
CM				PCT		(2 / 100) G- •) CLAY	MG	PCT	PC T	PCT
00-020	1.91 .23 .25 .21	. 166	12			8.5	3.1	.1	.I	11.8	4.4		16.2	12.6	1.52	2.7	67	73	9
25-026	-25	- 027	7			7.2	2.5	-1	.2	10.0	5.1			5.8 11.4			63	66 66	8
6-061	.21		•			7.2	2.4	.1	. 2	9.9	8.0	.7	17.9	14.0	.64	3.0	51	55	7
61-681	.17					7.4	2.6	.1	-2	10.3	7+4	• 7	17.7 18-4	14.4	-74			58 59	
91-099 99-119						7.7 7.5	2.8	-1	- 2	9.9 10.3 10.8 10.5	7.6 7.1	.7	17.6	14.0	.74 .73				÷
19-152						8.2	2.7	.1	.2	11.2	6.5	. 6	17.7					63	
EDTM ((SATURA)			NA.	NA	SAL T	GVP	 (*			SATURA	TION	EXTRAC	T 841-				ATTERB	
	8E1 8				5E	AD5	SELA	8414	AN 1B	60 1B	AP 18	601R	AI IA	6.114	6K1A	6114	6M1A	4F1	4 F2
	REST I			ESP	SAR	TOTL		€C	CA	MG	NA	K	CD3	HC03	CF	SD4	ИФЗ	LOID	PLST
CM	CM-		PCT	PCT		SOLU PPM	PCT	MMHOS/			. .	. MEG	/ L7 TF	R =			:	LMIT	INDX
	Au				,						·								
20-028																			
28-036																		***	
34÷061 61-081																		338	128
81-099																			
99-119	5500	4.2	36. 9					.14								- 9		30B	106
L9-152																			
																			
34-61	(ERALOG) L MT2		VRZ	MIL															
61-81	MT2	KK2	VRI	MIL															
81-99	ETH G	KK2	VR 1	MII.	t - no:	*****	4 -		UT 9 -		ATE T	e=	ALL 1	_ TOA	re.				
KRLAI)	AL CODE:	1 12 1 PM	. = MUM 4Y-44	TMORTI	LLONITI	E MI =	MICA	RK =	KADLI	- PODE	/R = VE	ERMICIA	LITE	- INA					
	MERALOG!	(178	11.		PLACE	MENT:	WIXED	•											
036-61	L VENS	. – R	E73		FE2 1	tm zr	SP	FD 24 1											
061-81		- A				TM SP SP1 ZR													
DB1-99	IVE ANOL	\$ 8 MTS#	AS P	ERCENT	ī.														
MINEA	AL CODE					EP I DOT	E FD	- FEL	DSPAR 5	GS =	GLASS	HN =	HORNB	LENDE	MS =	MUSCOV	ITE		_
		71	L' 9"	AT 2-1	ru - 74	MINMA: 1	LME 7	01 TI	PLUM (bc - 00	CTCTAL	JT MTM	ED AI C	ee -	100L M	IMEDAI	C CD -	- CONEY	IC
		7	1			i,=													

Soil classification: Typic Glossoboralfs; fine-silty, mixed.

Soil: Campia.

Soil No: S75-WI-95-8.

Location: Polk County, Wisconsin; NE's, SW's, sec. 36, T. 34 N., R. 16 W.; 100 feet west of windbreak and 120 feet south of road. About 45°24′ N. latitude and 92°10′ W. longitude.

Climate: Humid continental; mean annual temperature is 43° F; mean July temperature is 71° F; mean January temperature is 11.8° F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring

during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days.

(Data from Amery, WI., weather bureau substation.)

Vegetation and use: Native vegetation was primarily mixed northern hardwoods with some conifers. Most large areas of this soil have been cleared and are used for general farming. This site was in alfalfa hay meadow when sampled.

Parent material: Silty slack water deposits.

Physiography: Nearly level to sloping glacial lake basins.

Topography: Nearly level; site sampled was on a 2 percent plane slope.

Drainage: Well drained.

Ground water: Deep; over 5 feet.

Erosion: Slight.

Permeability: Moderate.

Described by: A.J. Klingelhoets and G. B. Lee, July 1975.

760225 0 to 20 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) silt loam; weak medium subangular blocky structure parting to moderate medium granular; friable; many roots; neutral; abrupt smooth boundary.

A2 760226 20 to 28 cm (8 to 11 inches). Brown (10YR 5/3) silt losm; moderate medium platy structure; friable; many roots; neutral; gradual irregular boundary.

A&B 760227 28 to 36 cm (11 to 14 inches). Grayish brown (10YR 5/2) silt (A2); moderate medium platy structure; friable; occupies about 55 percent of horizon as tongues 20 to 40 mm thick extending into or completely surrounding isolated remnants of dark yellowish brown (10YR 4/4) silt loam (B2t); moderate fine subangular blocky structure; friable; few thin patchy clay films on some faces of peds (B2t); many roots; slightly acid; gradual wavy boundary.

36 to 61 cm (14 to 24 inches). Dark brown heavy silt loam (B2t); moderate medium subangular blocky structure; firm; occupies about 70 percent of the horizon; thin patchy clay films on faces of peds (B2t); tongues of grayish brown (10YR 5/2) silt loam (A2) extend to bottom of horizon; weak coarse platy structure; friable; many roots; medium acid; gradual wavy boundary.

B6A2 760229 61 to 81 cm (24 to 32 inches). Dark brown (7.5YR 4/4) heavy silt loam (B2t); moderate medium subangular blocky structure; firm; occupies about 85 percent of the horizon; thin patchy clay films on faces of peds (B2t); tongues 10 to 20 mm thick of grayish brown (10YR 5/2) silt loam (A2) extend to bottom of horizon; friable; many roots; medium acid; gradual wavy boundary.

81 to 99 cm (32 to 39 inches). Dark brown (7.5YR 4/4) silt loam; weak coarse subangular blocky structure; friable; many roots; medium acid; gradual wavy boundary.

C1 760231 99 to 119 cm (39 to 47 inches). Dark yellowish brown (10YR 4/4) silt; many fine distinct grayish brown and yellowish brown (10YR 5/2 and 5/6) mottles; weak coarse platy structure; friable; weakly stratified; few alfalfa roots: medium acid.

C2 760232 119 to 152 cm (47 to 60 inches). Dark yellowish brown (10YR 4/4) silt; many fine distinct grayish brown and yellowish brown (10YR 5/2 and 5/6) mottles; few alfalfa roots; slightly acid.

Additional notes:

1. pH's in field determined by Truog kit.

SOIL NO - - - - - 575WI-95-9 COUNTY - - - POLK

GENERAL METHODS- - -1A, 1818, 2A1, 2B

SAMPLE NOS. 760233-760238

DEPTH	HORI	7 (1M						PARTIC			/STS.		1, 3Al.		241P				
SEFIR	nukl	_ 54	,-			FINE	(SAND			} (-SILT-		1	INTR	FINE		
			S AND		CL AY	CLAY	VCDS	CORS	MEDS	FNES	VFNS	COST	FNSI	VFSI	SAND	11	CLAY	CO3-	15-
			.05	• 05÷	.002	LT .000	. 2-	1- .5	.5- .25	.10	.10-	.02	-02 -002	.005			TO CLAY	CLAY	BAR TO
CM																		PCT	CLAY
000-017			62.3	31.1	6.6	1.9	5,8	20.9	20.5	10.9			12.7				******		
022-042			67.8				6.6			10.4	2.6				65.2	25.3 17.0			.59
042-053			85.2				8.7			11.2	2.1				83.1				.39
053-087			88.2	7.0	4.8	1.5	7.3	36.9		13.7	2.5				85.7				.44
Q 87-135			92.9	4.6		1.0	9.2			10.8	1.6				91.3				
135-153	C3		97.1	1.8	1.1	.7	12.4	41.5	33.1	9.7	-4	1.1	7		96.7	3.2	64		
DEPTH	(PARTI	CLE S	IZE AN	ALYSIS	. MM. 3	3B. 38) (BU	LK DEN	SITY	(+ + -		ER CO	NTENT-) CARB	ONAT F	(PI	
	VOL.	(WE	IGHT -			1 4ALD	4A1H	401	4B1C	481C	482	4C 1		6E1B	3A1A	8C1A	8C1 E
	GT 2	GT 75	75-20	0 20-5	5-2	LT 074	20-2	1/3-		COLE	1/10			WRD		ĽŤ	LT	1/1	1/2
CM	PCT		(- PCT	LT 75 -	1	PCT LT20	BAR G/CC	DRY 6/CC		BAR PCT	BAR PCT	BAR PCT	CM/ CM		Z PC T	+002 PCT	H2 O	ÇAÇL
000-017			TR	2	 2	39		1 45	1 70	010		18 0							
022-042	-	Ğ	TR	4	5	31	3	1.65	1.70 1.77	.010 .013		15.8 13.7		.19				6.3 6.5	6.0 6.0
042-053		0	0	3	3	15	6	1.56A			7.0C		2.1					6.6	5.9
053-087		Ç	TR	4	3	12		1.56B			6.2C		2.1	-06				6.4	5.6
087-135		0	TR	3 7	3	8		1.55A					1.5					5-8	5.0
135-153	10		TR	,	6	3	14	1.558			2.40		1.2	.02				5.8	5.2
DEPTH (OR GAN TO	HAT	TFR 1	IRON	PHOS	(E)	CTRACT	ARIF R	ASES 51	NAA1	ACTV	AL	CAT	EXCHI	PATIO	PATIO	 CA	1 B A C	SAT)
V EF (). ()	6ALA				******				6Q2B	JTM	6H1A					8D3	5 F 1	5C3	5C1
	ORGN	NI TG		EXT	TOTL		MG	NA	K	SUM	BACL		EXTB	NHAC	NHAC		SAT	EXTB	NHAC
	CARB			FE							TEA	EXT	ACTY		TO	TO	NHAC	ACTY	
	PCT	PCT		PCT		-					_) CLAY	MG	PCT	PÇT	PCT
000-017							1.8				1.7			6.9					
022-042 042-053	.19	- 02	0 10			5•2 2•6	2.3 1.0		.1 TR	7.6 3.6	2.5 1.6		10.1	8.2 3.9	. 69 . 72		63 67	75 69	93 92
053-087	.09					2.4	1.0		TR	3.4	1.6		5.0	3.8	.79			68	89
087-135						1.9	. 8		TR	2.7	1.4		4.1	3.9	1.56			66	69
135-153						1.6	-6	TR	TR	2.2	1.1		3.3	2.6	2.36	2.7	62	67	85
DEPTH	(SATUR	ATED	PASTE)	NA	NA	SALT	GYP	 {			SATUR	A TI ON	EXTRAC	T 841-				ATTER	
OEF IN	8E1 3		BA	5D2	5É	805	6F1A		6N1B				6I 1A					4F1	
	REST	PH	H20	ESP	SAR	TOTL		EC	CA	MG	NA	K	CO3	HCO3	CL	S04	NO3	LQID	PLST
	OHM-					SOLU		MMHOS/	_					_				LMIT	INDX
CM	C M		PCT	PCT	*	PPM	PCT					- MEQ	/ LITE	K + - ·			:	PCT	
000-017 022-042																		220	7D
042-053																			
053-087 087-135	31000		17 0					-08								.5			
135-153		2.3	17.5					•00								.,			
CLAY HI	NERALO							~~~~											
22-42	2 MT3	KK;	2 VRI	MIL	QZl														
42-5				MI1															
53-87 RELATI	7 MT: Ive amu			RAY	5 = 000	MINANT	4 =	ABUNDA	NT 3 =	MODER	ATE :	2 = SM	ALL 1	= TRA	CE.				
													LITE						
SAND MI	NERALO(3Y (7	B1).		PLACE	MENT:	MI XED	•											
022-42 042-5		:s - : :s - :				FM1 \$F FD13 #				AG.									
053-8		S -				TM1 F0													
RELAT	IVE AND	JUNTS	z AS F	ERCEN	r.														
MINER	AL CODE	2 F	D = FEI	LDS PAR	S HN :	- HORNE	LENDE	MS =	MUSCO	ITE F	R = P	YROX EN	E QZ	QUAR'	rz tm	- TOU	RMALINE	!	
(A) ES	TIMATE		E = RE	SI STAN	T MINE	RALS F	E = 1	RON MI	NERAL\$	\$P =	SPHEN	E AG	= ANT	IGOR IT	E AU	- AUGI	TE.		
IMI CO	1 TOWN E																		

⁽A) ESTIMATED.
(B) CORE SAMPLES, METHOD 4A3A.
(C) SIEVED SAMPLE, METHOD 4B1A.
(D) LIQUID LIMIT AND PLASTIC INDEX BY USDA-SCS, SOIL MECHANICS LAB, LINCOLN, NE.

Soil classification: Typic Argiboroll; coarse loamy, mixed.
Soil: Chetek taxadjunct*.
Soil No.: S75WI-95-9. Minaments. CPL NEL Con 2 T 32N D 17 N . 75 fear post of fance alone gravel road Hr L

SOIL NO - - - - - S75WI-95-3

COUNTY - - - POLK

GENERAL	METHODS	-1A,1	81B,2A	1,28			SAMPI	LE NOS.	7601	86-760	195		٠					
DEPTH	HORIZON	(SAND	SILT		FINE CLAY LT	(PARTIC	LE SIZE Sand -	FNES	YSIS. I VFNS	COS I	-SILT-	VFSI)	INTR	FINE	NON-	8D1 15-
CM			.002		.0002	2 1	.5		.10	.05	.02	.002	-002	10	02	ÇLAY	PCT	TO CLAY
000-003 003-008 008-023 023-033 033-058 053-078 078-100 100-125 125-178 000-018	A2 821 822 83 83 C1 C2	75.1 77.2	2.1 1.9 1.8 .6 21.2	4.2 4.4 2.7 1.2 1.3 .4	2.8 1.5 1.9	11.4 14.5 6.0 10.7 1.7 1.9 17.9	16.3 20-1 15.6 17.0 33.9 3.9 14.7	20.9 20.0 21.9 30.0 42.2 43.1 23.9 34.7 19.3	15.8 15.9 23.0 20.8 33.4 30.5 18.8 56.4 27.4	4.0 4.8 8.2 4.2 2.3 4.4 2.4 3.9 8.2	7.1 7.0 9.0 4.1 1.1 1.4 1.0 .5	11.4 5.7 1.0 .5 .8 .1 12.6		71.1 72.4 67.2 81.6 92.9	19.2 17.1 18.0 27.3 15.4 13.4	36 43		2.3 .96 .70 .57 .61 .59
	(PARTICLE S VOL. (GT GT 2 75 PCT PCT	IZE AN	ALYSIS WE 0 20-5	, MM, IGHT – 5–2	LT .074	20-2 PCT) { BUE) 4Ald 1/3- Bar	LK DENS 4A1H OVEN DRY G/CC	4D1 COLE	481C 1/10 8AR PCT	WATE 4B1C 1/3- BAR PCT	ER COI 4B2 15- BAR PCT	NT ENT - 4C 1 WRD CM/ CM		CARB 6E1B LT 2 PCT	3A1A LT •002 PCT	(PF	+)
000-003 003-008 008-023	1 0 3 0 10 TR	0 0 15	TR 2 1	2 4 3	40 25 24	. 6	1.3 B 1.3 B 1.33C			40.3D 14.3D 14.0D		21.0 5.2 3.2	.25 .12 .14				5.4 5.4 4.6	5.1 5.1 4.3
	() (1)																	
	19 .																	
<u>.</u>	-		0.4.0	1	# (T	<u>^</u>		-	Mini									
053-078 078-100 100-125 125-178 000-018	1 0 15 0	0 0 TR 0 0	1 7 0 4	1 1 12 TR 4	5 5 3 2 28	2 19	1.6 8 1.58C 1.62C 1.51C			3.6D 2.8D 1.8D		1.6 1.2 1.5 .8 6.3	.03 .03				5.7 6.0 6.0 5.9 6.1	5.5 5.5 5.6 5.4 5.7
DEPTH (C	DRGANIC MAT 6A1A 6B1A DRGN NITG CARB PCT PCT	C/N	6C2B EXT FE PCT	TOTL PCT	ÇA (602D MG	6P2B NA	6Q2B K	SUM EXTB / 100	6H1A Bacl Tea	AL 6G1E KCL EXT	5A3A EXTB ACTY		8D1 NHAC TO CLAY	BD3 CA TO MG	CA 5F1 SAT NHAC PCT	5C3 EXTB ACTY PCT	SAT) 5C1 NHAC
003-008 008-023 023-033 033-053 053-078 078-100 100-125 125-178	.48 .03 .29 .15 .01 .01	5 19 4 17 3 15			20.7 5.3 .8 1.4 1.6 1.6 1.7 1.1	3.3 .9 .3 .4 .8 .6 .4 .4	TR .0 .0 .0 TR .0 .0	.6 .1 .1 .1	24.6 6.3 1.2 1.9 2.5 2.3 1.8 2.1	23.6 7.6 7.0 4.7 4.3 1.8 1.6 1.9	TR TR 1.5 .7 .5	8.2 6.6 6.8 4.1 3.4 4.0 2.2	10.0 5.9 4.8 5.0 2.8 2.2 2.6	3.87 1.85 1.28 1.14 1.14 1.04 1.83 2.00	6.3 5.9 2.7 3.5 2.0 2.7 3.5 4.3 3.7	58 53 14 29 32 57 64 65 69	51 45 15 29 37 56 53 53 64	69 63 20 40 50 82 82 81 88 77
DEPTH ((SATURATED 8E1 8C1B REST PH OHM— CM	8A H2O PCT	NA 5D2 ESP PCT	NA 5E SAR	8D5 TOTL SOLU	GYP 6F1A PCT	BA1A EC MMHOS/	(6018 MG	6P18 NA	6Q1B K - MEQ .	611A CO3	A11A HC03	6K1A CL	6L1A 504	6M1A NO3	4F1 LQID LMIT	4F2 PLST
000+003 003-008 008-023 023-033 033-053 053-078 078-100 100-125 125-178 000-018	34000 6.2	19.7				•	-10								.6		_ 4	
CLAY MII 8-2: 33-5: 100-1: RELATI MINER	3 VR3 K 25 VR2 K IVE AMOUNTS AL CODE: M NERALOGY (7 3 VFNS 3 VFNS MS1	A2C). K2 MI: K2 QZ: K1 MI: I = MI: B1). RE82 RE79	1 QZ1 1 1 RAY) : CA KK QZ79 QZ67 SR1,	5 = DO = KAO PLACE FE2 FE4	MINANT	4 = VR = MIXED = 1014 P FD2	ABUNDAI VERMI(• HN2 GI 7 HN1	NT 3 = CULITE N1 MS1 MS1	MODE QZ = VR E	RATE 2 QUART? EP. 1 N. FNI	2 = SM/ 2. FNES - ES - R	ALL 1 RE77 E80 (= TRAC QZ74 QZ71 1	;E• FE3 FE6 SI	F017 P2 TM		1N2 BTI 6 HN2	L TE1. VR1

Soil classification: Typic Udipsamment; mixed, frigid.

hue 🚾

Soil: Cromwell taxadjunct*.

Soil No.: S75WI-95-3.

Location: Polk County, Wisconsin; SEk, Sec. 11, T. 36 N., R. 16 W.; 1,600 feet north and 3,600 feet east of south-

ture is 11.8° F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days. (Data from

Amery, WI., weather bureau substation.)

Vegetation and use: Native vegetation was primarily pine with pioneer species of hardwood. Some of the less sloping sreas have been cleared and are used for general farming. This site has a mature stand of red and white pine with an understory of hazelnut, fern, and forbs.

Parent material: Thin loamy outwash and acid stratified sand and gravel.

Physiography: Nearly level to sloping glacial outwash plains, terminal and recessional moraines, and highly pitted outwash.

Topography: Gently sloping with sample site on 5 percent plane slope.

Drainage: Somewhat excessively drained.

Ground water: Deep.

Erosion: None

Permeability: Moderately rapid in sola and rapid in substratum.

Described by: A.J. Klingelhoets and G.B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

Al 760186 0 to 3 cm (0 to 1 inch). Black (10YR 2/1) sandy loam with moderate medium granular structure; very friable; very high in organic matter; estimated less than 5 percent by volume coarse fragments over 2 mm in diameter; many roots; medium acid; abrupt wavy boundary.

3 to 8 cm (1 to 3 inches). Dark brown (7.5YR 4/2) sandy losm; weak coarse platy structure; very friable; estimated less than 5 percent by volume coarse fragments over 2 mm in diameter; many roots; medium acid;

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC MATIONAL SOIL SURVEY LABORATORY LINCOLM, MEDRASKA

SOIL NO - - - - - 575#1-95-2

COUNTY - - - POLK

DEPTH	HOBI	20N	(·	FINE		PARTIC	LE SIZE SAND -			T 25H,				INTR)	RATI 801
			SAND	SILT	CLAY	CLAY	`VCOS	CORS	BE DS	PNES	VFNS	COSI	PNSI	VFSI	SAND	II	CLAY	CO3-	15-
			2- .05	.05-	LT .002	LT .0002	2-	1 - . 5	.5- .25	. 25 - . 10	. 10 - . 05	.05	.02	.005	2-	.2- .02	CLAY	CLAY	BAR TO
CH .			(LT 2H)	PCT	PCT	CLAY
00-023	AP		59.4	34.2	6.4	1.3	2.7	7.5	11.6	23.0	14.6	19,4	14.8		44.8	45.5	20		. 5
23-033	Ã2		58.7	24.3	17.0	6. 9	3. 2	8.1	12.7	22.4	12.3	11.7	12.6		46.4	35.4	41		. 4
33-052	ASB		58.2	22.0	19.8	9. 2	3.9	9.6	12.7	21.3	10.7	10.0	12.0		47.5	31.4	46		. 4
52-079	Be A		57.3	22.8	19.9	9, 1	3. 1	8.6	12.5	21.9	11.2	10.5	12,3		46.1	32.8			- 4
79-105	B\$ 1		56.3	23.4	20.3	9.4	4.3	9.9	12.0	19.7	10.4	9.7	13.7		45.9	30.1	46		5
05-126	BG		55.6	23.9	20.5	9.6	4.0	9.3	12.1	19.9	10.3	9.8	14.1		45.3	30.2	47		• 5
26-158 5 8 -198	C1		52.8	26.2	21.0	9.2	3.1 5.0	8.2	11.2	19.6	10.7	10.5	15.7		42.1	31.2	44		
SPTH (58.2				, 3B2)								47.1)			(PF	
,	(PARTI	CLE S (- GT 75 PCT	IZE ANA	LYSIS, - WEJ 20-5	MH, 3 GHT - 5-2	LT .074	, 3B2) 20-2 PCT	(B07 4a 1D 1/3- Bar	LK DEWS	SITY) 4D1				WTENT- 4C1 WRD CH/ CH			WATE 3A1A LT .002 PCT	(PF 8C1A 1/1 H2O	8C
C# 00-023	(PARTIC VOL. GT 2 PCT	GT 75 PCT	75-20	LYSIS, - WEJ 20-5 PCT L	MH, 3 GHT - 5-2	LT .074)	, 3B2) 20-2 PCT LT20	(BUI 4a 1D 1/3- Bar G/CC	LE DENS 4A1H OVER DRY G/CC	4D1 COLE	(+ 4B1C 1/10 BAB	-WATE 4B1C 1/3- BAR PCT	E COI 4B2 15- BAR PCT	4C1 WRD CH/ CH		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 H2O 6.1	8C 1/2 CA
CH 00-023 23-033	(PARTIC VOL. GT 2 PCT	GT 75 PCT 0	75-20 (TB	LYSIS, - WEJ 20-5 PCT L	NH, 3 GHT 5-2 T 75 3 6	LT .074)	, 3B2) 20-2 PCT LT20 5	(BU 4A 1D 1/3- BAR G/CC 1.67	LK DENS 4A1H OVER DRY G/CC 1.72	.009	(+ 4B1C 1/10 BAB	WATE 4B1C 1/3- BAR PCT 14.3	B CO 4B2 15- BAR PCT 3.6 7.5	4C1 WRD CM/ CM . 17 . 13		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 E20 6.1 6.2	8C 1/2 CA
CH 00-023 23-033 33-052	(PARTIC VOL. GT 2 PCT S 5	GT 75 PCT 0 0	75-20 (TB TR	LYSIS, - WE: 20-5 PCT L 2 3	NH, 3 GHT - 5-2 T 75 - 3 6 5	LT .074) 47 44 45	, 3B2) 20-2 PCT LT20 5 8	(BU 4A 1D 1/3- BAR G/CC 1.67 1.64 1.61	LK DENS 4A1H OVER DRY G/CC 1.72 1.76	.009 .023	(+ 4B1C 1/10 BAB	WATE 4 B1C 1/3- BAR PCT 14.3 16.1 17.5	BAR PCT 3.6 7.5	4C1 WRD CM/ CM - 17 - 13 - 12		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 H2O 6.1 6.2 5.8	8C 1/2 CA
CH 00-023 23-033 33-052 52-079	(PARTIC VOL. GT 2 PCT	GT 75 PCT 0 0	75-20 (TB TR O	LYSIS, - WEJ 20-5 PCT L 2 3 1	MM, 3 GHT - 5-2 T 75 - 3 6 5	17 .074) 47 44 45 46	, 3B2) 20-2 PCT LT20 5 8 6	4A 1D 1/3- BAR G/CC 1.67 1.64 1.61	LK DENS 4A1H OVER DRY G/CC 1.72 1.76 1.76	.009 .023 .029	(+ 4B1C 1/10 BAB	- WATE 4 B1C 1/3- BAR PCT 14.3 16.1 17.5 18.1	BAR PCT 3.6 7.5 9.7	4C1 WRD CH/ CH . 17 . 13 . 12 . 14		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 H2O 6.1 6.2 5.8 5.3	8C 1/2 CA 5 5
CH 00-023 23-033 33-052 52-079 79-105	(PARTIC VOL. GT 2 PCT S 5	GT 75 PCT 0 0 0	75-20 (TR TR O TR	LYSIS, - WEJ 20-5 PCT L 2 3 1	NH, 3 GHT - 5-2 T 75 - 3 6 5	LT .074) 47 44 45	, 3B2) 20-2 PCT LT20 5 8 6 6 8	4a 1b 1/3- Bar G/CC 1.67 1.64 1.61 1.63	LK DENS 4a1H OVER DRY G/CC 1.72 1.76 1.76 1.73 1.70	.009 .023 .029 .019	(+ 4B1C 1/10 BAB	- WATE 4 B1C 1/3+ BAR PCT 14.3 16.1 17.5 18.1 21.6	BAR PCT 3.6 7.5	4C1 WRD CM/ CM - 17 - 13 - 12		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 H2O 6.1 6.2 5.8	8C 1/2 CA
CH 00-023 23-033 33-052 52-079 79-105 05-126	(PARTIC VOL. GT 2 PCT S 5	GT 75 PCT 0 0	75-20 (TB TR O	LYSIS, - WEJ 20-5 PCT L 2 3 1	MM, 3 GHT - 5-2 T 75 - 3 6 5 5	LT .074) 47 44 45 46 46	, 3B2) 20-2 PCT LT20 5 8 6 6 8	4A 1D 1/3- BAR G/CC 1.67 1.64 1.61	1.72 1.76 1.73 1.70	.009 .023 .029	(+ 4B1C 1/10 BAB	- WATE 4 B1C 1/3- BAR PCT 14.3 16.1 17.5 18.1	# COI # B2 15+ BAR PCT 3.6 7.5 9.7 9.2 10.9	4C1 WRD CM/ CM . 17 . 13 . 12 . 14		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 H2O 6.1 6.2 5.8 5.3	8C 1/ CA 5 5 5
00-023 23-033 33-052 52-079 79-105 05-126	(PARTIC VOL. GT 2 PCT S 5 5 5 5 5	GT 75 PCT 0 0 0 0	75-20 (TB TR O TB	LYSIS, - WBJ 20-5 PCT L 3 1 1 2 2	MM, 3 GHT - 5-2 T 75 - 3 6 5 5	1T .074) 47 44 45 46 46 46	, 3B2) 20-2 PCT LT20 5 8 6 6 8	42 1D 1/3- BAR G/CC 1.67 1.64 1.61 1.57 1.58	LK DENS 4a1f OVER DRY G/CC 1.72 1.76 1.76 1.76 1.73 1.60	.009 .023 .029 .029 .026	(+ 4B1C 1/10 BAB	- WATE 4 B1C 1/3- BAR PCT 14.3 16.1 17.5 18.1 21.2	#B2 15+ BAR PCT 3.6 7.5 9.2 10.9	4C1 WRD CH/ CH . 17 . 13 . 12 . 14 . 16		CARBO 6E 1B LT 2	3A1A LT .002	8C1A 1/1 H2O 6.1 6.2 5.8 5.3 5.3	8C 1/CA 55 54 45 6
20-023 23-033 13-052 12-079 19-105 05-126 6+158 18-198	(PARTIC YOL. GT 2 PCT S 5 4 5 5 5 5	GT 75 PCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IZE ANA. 75-20 (TR TR O TR TR TR TR	LYSIS, - WEJ 20-5 PCT 1 2 3 1 1 2 2 2 2 2 2	NH, 3 GHT - 5-2 7 75 - 3 6 5 5 6 6 8 7	LT .074	, 3B2) 20-2 PCT LT20 5 8 6 6 6 8 8 9	4A1D 1/3-BAR G/CC 1.67 1.64 1.61 1.57 1.58 1.48 1.55	4 DENS 4 A 1 HE 0 VER DRY 6/CC 1.72 1.76 1.73 1.70 1.73 1.60 1.64	009 023 029 019 029 019 029 019	(+ 1-10 1/10 BAR PCT		# COI # B2 15+ BAR PCT 3.6 7.5 9.7 9.2 10.9 10.8 11.2	4C1 WRD CH/ CH . 17 . 13 . 12 . 14 . 16 . 16)	CARBO 6E 1B LT 2 PCT	3A1A LT .002	8C1A 1/1 H2O 6.1 6.2 5.8 5.3 5.3 5.9 6.4	8C 1/CA 55 5 4 4 5 6 6
CH 00-023 23-033 33-052 52-079	(PARTIC YOL. GT 2 PCT S 5 4 5 5 5 5	GT 75 PCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IZE ANA. 75-20 (TR TR O TR TR TR TR	LYSIS, - WEJ 20-5 PCT 1 2 3 1 1 2 2 2 2 2 2	NH, 3 GHT - 5-2 7 75 - 3 6 5 5 6 6 8 7	LT .074	, 3B2) 20-2 PCT LT20 5 8 6 6 6 8 8 9	4A1D 1/3-BAR G/CC 1.67 1.64 1.61 1.57 1.58 1.48 1.55	LK DENS 4a1f OVER DRY G/CC 1.72 1.76 1.76 1.76 1.73 1.60	009 0023 0029 0019 0029 0019 0029 0029 0029	(+ 1-10 1/10 BAR PCT	-WATE 4B1C 1/3-BAR PCT 14.3 16.1 17.5 18.1 21.6 21.2 24.7 20.3	# COI # B2 15+ BAR PCT 3.6 7.5 9.7 9.2 10.9 10.8 11.2	4C1 WRD CA/ CH . 17 . 13 . 12 . 14 . 16 . 16 . 19 . 16)	CARBO 6E 1B LT 2 PCT	3A1A LT .002 PCT	8C1A 1/1 H2O 6.1 6.2 5.8 5.3 5.3 5.9 6.4 7.1	8C 1/CA 55 5 4 4 5 6 6

00-023 023-033 033-052 052-079 179-105 105-126 126-158	.75 .21 .16 .12 .10 .07	.07 .03	2 7			4.4 7.6 8.3 7.6 8.1 9.7 10.0	1.4 3.0 3.8 4.1 4.5 5.5 5.6	.1 .1 .2 .2 .2 .2	.1 .2 .3 .3 .3 .2 .2	5.9 10.9 12.5 12.1 13.1 15.7 16.0	3.0 3.3 4.9 5.5 4.7 3.3 2.9 1.6	.4	8.9 14.2 17.4 17.6 17.8 19.0 18.9	6.4 11.8 13.7 14.2 15.1 16.2 16.3 13.9	1.00 .69 .69 .71 .74 .79 .78	3.1 2.5 2.2 1.9 1.8 1.8	69 64 61 54 50 61	66 77 72 69 74 83 85	9 9 8 8 9
CH CH	(SATUR: 8B1 8 REST OHM- CM		PASTE) 8A H2O PCT	MA 5D2 ESP PCT	NA 5E SAR	SALT 8D5 TOTL SOLU PPH	GYP 6F11	(8a1a BC MHBOS/ CH	6 N 1 B	601B EG		6Q1B K	611A	6J1A HCO3	6K1A	6L1A S04) 681A 803	ATTERI 4f1 LQID LMIT PCT	4F2 PLST
 00-023 23-033 33-052 52-079 79-105		4. 6	34.8	# *				.15								2.9		37A	17&
126-158 158-198																		31 <u>a</u>	14,

Soil classification: Glossic Eutroboralfs; fine-loamy, mixed.

Soil: Cushing taxadiunct*.

Soil No : S75WI-95-2.

Location: Polk County, Wisconsin; NW4, Sec. 25, T. 36 N., R. 16 W.; 280 feet east of road and 350 feet south of large drainageway. About 45°35' N. latitude and 92°40' W. longitude.

Climate: Humid continental; mean annual temperature if 43° F; mean July temperature is 71° F; mean January

temperature is 11.8° F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days

(data from Amery, WI., weather bureau substation.)
Vegetation and land use: Native vegetation was principally mixed northern hardwood forest; much of this soil has been cleared and is used for general farming; present crop on this field is red clover.

Parent material: Losmy glacial till.

Physiography: Gently sloping to moderately steep glacial end and ground moraines.

Topography: Gently sloping with sample site on a 3 percent convex slope.

Drainage: Well and moderately well drained.

Ground water: Deep - over 5 feet at time of sampling.

Erosion: Slightly eroded.

Permeability: Moderately permeable.
Described by: A.J. Klingelhoets and G. B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

to 23 cm (0 to 9 inches). Dark grayish brown (10YR 4/2) light losm; weak medium subangular blocky structure parting to weak fine granular; friable; estimated 5 percent by volume coarse fragments over 2 mm and less than 1 percent over 3 inches in diameter; many roots; medium acid; abrupt wavy boundary.

A2 760179 23 to 33 cm (9 to 13 inches). Brown (10YR 5/3) sandy loam; moderate coarse platy structure; friable; estimated 5 percent by volume coarse fragments over 2 mm and less than 1 percent over 3 inches in diameter; many roots; slightly acid; gradual wavy boundary.

33 to 52 cm (13 to 20 inches). Grayish brown (10YR 5/2) sandy loam (A2); weak coarse platy stucture; A6B 760180 33 to 52 cm (13 to 20 inches). Grayish brown (10YR 5/2) sandy loam (A2); weak coarse platy stringle; occupies about 60 percent of the horizon as tongues 10 to 30 mm thick extending into or completely surrounding remnants of dark brown (7.5YR 4/4) loam (B2t); moderate medium subangular blocky structure; friable; few thin patchy clay films on faces of peds (B2t); estimated less than 5 percent by volume coarse fragments greater than 2 mm in diameter; many roots; slightly acid; gradual irregular boundary.

B6A 760181 52 to 79 cm (20 to 31 inches). Dark brown (7.5YR 4/4) clay loam (B2t); weak coarse prismatic structure parting to moderate medium subangular blocky; firm; occupies about 75 percent of the horizon; thin patchy clay films on more than 50 percent of surfaces of peds; tongues of brown (7.5YR 5/2) sandy loam (A2) extend to bottom of horizon; weak coarse platy structure; friable; estimated less than 5 percent by volume coarse fragments greater than 2 mm in dismeter; many roots; medium acid; clear wavy boundary.

<u>B&A 760182</u> 79 to 105 cm (31 to 41 inches). Dark brown (7.5YR 4/4) clay loam (B2t); few fine distinct mottles of strong brown (7.5YR 5/6); weak coarse prismatic structure parting to moderate medium subangular blocky; firm; occupies about 75 percent of the horizon; thin patchy clay films on more than 50 percent of surfaces of peds; tongues of brown (7.5YR 5/2) sandy losm (A2) extend to bottom of horizon; weak coarse platy expecture. Frishl

estimated less than 5 percent by volume coarse fragments greater than 2 mm in dismeter; many roots; medium acid; clear wavy boundary; separated on depth for analysis only.

Bg 760183 105 to 126 cm (41 to 49 inches). Dark brown (7.5YR 4/4) loam; many fine distinct strong brown, brown, and yellowish red (7.5YR 5/6, 5/2, and 5YR 5/6) mottles: moderate medium subangular blocky structure; friable:

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLM, NEERASKA

SOIL NO - - - - - 574WI-85-2

COUNTY - - - ON EIDA

GENERAL METRODS- - - 1A, 1818, 2A1, 2B

SAMPLE WOS. 741900-741904

DEPTH	HOBI	ZON	5A MD 2- .05	SILT .05-	CLAY LT .002	FINE CLAY LT .0002	vcos 2-	CORS 1-	SAND . EEDS .5-	PHES . 25-	VFNS .10-	cosi .05	-SILT- F#SI .02 .002	VISI .005	SAND - 2- .10	INTR II .2-	PINE CLAY TO	CCTAA CO3- NOM-	8D 1 15- BAR TO
000-015 020-050 050-090	012									LT 21							, PCT	PCT	CLAI
090-120 120-150			73.8	21.7	4.5		.6	16.9	33.1	17.4	3,8	15.6	6.1		70.0				
DEPT 8	(PARTIC	LE 51 (GT	ZB AN	LYSIS	MH, S	B, 3B1	, 3B2)) 20-2	(BUI	A DENS	ITY) 4D1 COLE	4B1C	-WAT	BR CO:	NTENT- 4C 1		CARB 6B1B	ONATE 311A	(- +P) 8C1A	8C1
C5	2 PCT	75 PCT			T 75 -	.074	PCT LT20	G/CC	DRY G/CC		BAR PCT	BAR	PCT	CH/		LT 2 PCT	.002 PCT	H20	CAC
000-015 020-050 050-090 090-120 120-150	0	0	0 0 0 0	O O O TR	0		0 0 0 0	.09 .25 .14 .21	.25 .88 .47 .66		727 348 625 435		104 115 137					5.3 5.4 5.4 5.4 5.0	4. 4.
OBPTE (611A ORGE CARB PCT	6B1A WITG PCT	C/H	6C2B EXT FR PCT	TOTL PCT ((EX 6#2E CA	TBACTI 602D HG	ABLE 81 6P2B WA	15 #\$ 5 E 60 2 B K	SUB BXTB / 100	6H1A BACL TEA G	AL 6G1E KCL EXT	(CAT 5A3A EXTB ACTY	BICH) 5A6A VHAC	RATIO 8D1 WHAC TO CLAY	RATIO 8D3 CA TO EG	CA 5P1 SAT NHAC PCT	(BAS) 5 C3 EXTE ACTY PCT	E SAT 5C1 #HA PCT
000-015 020+050 050-090 090-120 120-150	44.2 44.0 45.9 35.1 .42	2.51 2.54 2.44 1.82	18 17 19 19			52. 1 61. 6 65. 0 57. 4	12.6 13.6 17.2 15.8	.3 .3 .2	1.0 .2 .3 .1	66.0 75.7 82.8 73.5	104 105 107 87.9		170 180 189 161	111 113 107 93.9		4.1 4.5 3.8 3.6	47 55 61 61	39 42 44 46	5 6 7 7
DEPTH :	(SATURI 8E1 (REST OHN- CM	TED P C1B PH	81 81 820	FA 5D2 ESP	NA 5e Sar	SALT 8D5 TOTL SOLU	GYP (6 7 11	8A1A EC IMHOS/	681B CA	601B HG	SATURA 6P1B	TION 1 6Q1B K	6I1A CO3	F 8A1- 6J1A HC03	6K1A CL	6L1A SO4) 6811 803	ATTERS 4F1 LQID LHIT	BERG 4 F2 PLST
						800			. 9										
020-050 050-090 090-120 120-150	7700 6300	5.5 5.3	592 935 797			380 1000 1200		.11 .19 .26	- 6	.3	.1	TR	0	.0	.2	. 9	.0		
DEPT H	(- +					HI STOS	OF CEI	BACTE	izatio	m)	1				
	87 Minl	•	86	PYRODE PYROI	H		4131	411			4 B4	4B10	C 4B		ı				
CH	CONT PC T		PCT		COLOR			G/CC		IDUE PC1				t Os					
000-015 020-050		15 A	1	10 YI	•	6.8	,34	.30	.213	71 E		468 262 498	75.7 66.	3 .59	5		***	*****	
050-090 090-120		30 30	ā	7.5YE		6.0	.16	. 10	.330		450 462		50.						

⁽A) 50 PERCENT (B) ESTIMATED.

BLACK PARTICLES (CHARCOAL?) -

Soil classification: Terric Borosaprists; loamy, mixed, euic.

Series: Dawson taxadjunct*.

Soil No.: \$74WI-85-2.

Location: Oneida County, Wisconsin; NE%, NE%, Sec. 32, T. 35 N., R. 11 E.; 100 feet west of stream and 75 feet north of road. About 45 30 N. latitude and about 89 14 W. longitude.

Climate: Humid continental. Mean annual temperature is 41.6 F; mean July temperature is 68.4 F; mean January temperature is 12.8 F; mean annual precipitation is 30.78 inches with nearly two-thirds of the precipitation falling during the growing season; total amount of snowfall is 55.6 inches; the growing season averages 127 days, but less in the organic areas (data from

Rhinelander, WI., weather bureau substation). Parent material: Deposits of herbaceous organic material 16 to 50 inches thick over sandy mineral deposits.

Physiography: Depressional area along drainageway.

Vegetation: Sedges, willow, tag alder, grasses, forbs, spirea.

Size of area: About 200 acres.

Distance to adjacent mineral soil: About 200 feet to the west.

Depth to water table: 75 cm.

Microrelief: Hummocky. Hummocks are 12 to 18 inches high.

Subsidence: None

Soil temperature: Measured soil temperature of 10.0° C. at 50 cm.

Described and sampled by: G.W. Hudelson, W.C. Lynn, W.E. McKinzie, G.B. Lee, R.L. Newbury, S.W. Payne, and A.J. Klingelhoets. Sampled from pit to 40 inches, posthole digger below 40 inches.

0 to 15 cm. Very dark brown (7.5YR 2/2), dark brown (7.5YR 3/2) rubbed or pressed hemic material; 74L900 about 80 percent fiber, about 35 percent rubbed; massive (matted); friable; fibers primarily herbaceous; about 15 percent mineral soil material; many fine roots; pH 6.0 (Truog); clear wavy boundary.

Oal (not sampled) 15 to 20 cm. Black (7.5YR 2/1) broken face, rubbed, or pressed sapric material; about 40 percent fiber, about 5-10 percent rubbed; weak fine subangular blocky structure; very friable; fibers primarily herbaceous; about 35 percent mineral soil material; common fine roots; pH 5.8 (Truog); clear wavy boundary.

74L901 20 to 50 cm. Dark brown (7.5YR 3/2) broken face, rubbed, very dark brown (10YR 2/2) pressed sapric material; about 40 percent fiber, about 5-10 percent rubbed; weak medium and fine subangular blocky structure; friable; fibers primarily herbaceous; about 30 percent mineral soil material; few fine roots; pH 6.2 (Truog); gradual wavy boundary.

50 to 90 cm. Very dark brown (10YR 2/2), very dark grayish brown (10YR 3/2) rubbed, very dark brown (7.5YR 2/2) pressed sapric material; about 60 percent fibers, about 15-20 percent rubbed; weak coarse platy structure; very friable; fibers primarily herbaceous with a few woody fragments; about 25 percent mineral soil material; few fine roots; pH 6.2 (Truog); gradual wavy boundary.

Oa4 741903 90 to 120 cm. Very dark brown (10YR 2/2), very dark grayish brown (10YR 3/2) rubbed, very dark brown (7.5YR 2/2) pressed sapric material; shout 35 percent fibers, about 10-15 percent rubbed; weak coarse platy structure parting to weak fine subangular blocky structure; very friable; fibers primarily herbaceous with a few woody fragments; about 25 percent mineral soil material; pH 6.2 (Truog); abrupt wavy boundary.

Cg 741904 120 to 152 cm. Dark gray (5Y 4/1) medium and coarse sand; single grained; loose; pH 7.0 (Truog).

*This pedon is a taxadjunct to the Dawson series because it has more fine mineral material than is typically present in that series.

Remarks:

- 1. Oa3 and Oa4 sedge fibers are dark brown (7.5YR 3/3 and 3/4) and brown (7.5YR 5/4).
- 2. Cg horizon contains a few thin lenses (1 to 3 cm thick) of sandy-loam and loam.

SOIL NO - - - - - STOWIS-71-3 COUNTY - - - WOOD

GENERAL METHODS- - -14.1818,241,28 SAMPLE NOS. 70L935-70L942 U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

DEPTH	HORI	7 MAI	1				1	PARTIC	F 517F	AMAL V	/515. 1	T 2MM.	341-	3414.	341A -			1	PATIO
DE- 111	1.01.1.	-0.4							SAND -								FINE		
			SAND	SILT	CLAY				MEDS							11	CLAY	C 03-	15-
			2-	.05-	LT	ŁT	2-	1-			.10-	.05	• 02		SAND	. 2-	TO	CLAY	BAR
			.05		+002			. 5	.25	-10	.05	-02	.002		21	.02	CLAY		TO
CM			(PCT	LT 21							PCT	PCT	
000-20	AP	t		78.2	13.2		.6	2.0		1.6	2.8			7.8	5.8	40.9	39		.6
020-26	A2		6.0	75.5	18.5	6.6	- 2	.9		-9	3.1	39.6	35.9	6.3	2.9	43.1	36		. 4
026-37	A&B.		6.1	70.2	23.7	11.7	•4	. 6		.8	3.3	36.8	33.4	5.8	2.8	40.4	49 65		-4
037-49 049 - 65	286A 2821		16.9 23.4	48.0 39.3	35.1 37.3		1.6 2.5	4.5 5.1		3.4 5.8	3.8 6.5	24.5 13.7	23.5 25.6	4.9 7.0	13.1	29.9 23.6			.40
065-92	28221		21.4	39.2	39.4	19.7	1.2	2.9	3.0	6.2	8.1	14.3	24.9	7.1	13.3	26.1	50		.5
092-146	2C	•	64.0		8.1	4.4	1.8	5.6	6.6	22.1	27.9	18.0	9.9	2.4	36.1	60.1			.99
146-182		1		15.6	3.8	1.9	10.6	17.0		23.0	19.5	10.7	4.9	1.8	61.1	44.0	50		1.1
																	ه شنه ب بيدن		
						38. 381					481C		R COP	TENT-				8CIA	9C1
	GT	GT -		20-5		LT		1/3-	OVEN		1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
	2	75	13-20	20-5	3-2	.074	PCT	BAR	DRY	COLL	BAR	BAR	BAR	CM/		Ž.	. 0 02	H20	CACI
CM	PCT		(PCT I	.T 75)			G/CC		PCT	PCT	PCT	CH		PCT	PCT		
000-20	TR			TR	TR	93	TR	1.40		.014	29.1	27.5	8.0	.28	3.58			5.0	4.
020-26	TR	ŏ	ŏ	TR	TR	96	TR	1.54	1.60	.013	25.1	23.9	8.9	.24	4.38	3		4.9	3.4
026-37	TR	0	0	TR	TR	97	TR	1.46	1.53	-016	27.6	24.2	10.9	.20	2.38	1		4.7	3.1
037-49	TR	G	G	TR	1	85		1.504					16.7					4.5	3.
049-65	TR	0	0	_1	TR	80		1.44		.058	28.0	26.2	18.8	-11	2.08			4.2	3.
			0	TR	TR	84			1.71	.060	29 . Z	27.1	20.6 7.7	.10	1.46	•		4.6 5.4	3.9
065-92	ΓR	ō																	
092-146	TR	Ö	Ó	2	1 7	51 25		1.60A											
					17	51 25		1.70A					4.2					6.2	5.2
092-146	TR 12	0	0	11	7	25 (ex	18 TRACT	1.70A ABLE B				AL	4+2 {CAT	EXCHI			GA.	6.2 (BASE	5.
092-146 146-182 DEPTH (0	TR 12 PRGANIC 6A1A	O O MATT 6BlA	0 0 ER)	2 11 IRON 6C28	7 PHOS	25 (ex 6N2E	18 TRACTA	1.70A ABLE B	6Q2B		6H1A	6G1E	4.2 (CAT 5A3A	5A 6A	801	8D3	5F1	6.2 (BASE 5C3	SAT!
092-146 146-182 DEPTH (0	TR 12 PRGANIO 6A1A ORGN	O O MATT	0 0 ER)	IRON 6C28 EXT	7 PHOS	25 (ex	18 TRACTA	1.70A ABLE B	6Q2B	SUM	6H1A BACL	6G1E KCL	4.2 (CAT 5A3A EXTB	5A 6A	8D1 NHAC	CA	5F1 SAT	6.2 (BASE 5C3 EXTB	SAT!
092-146 146-182 DEPTH (0	TR 12 PRGANIO 6A1A ORGN CARB	O O MATT 6B1A NITS	0 0 ER)	IRON 6C28 EXT FE	7 PHOS TOTL	25 (EX 6N2E CA	TRACTA 6020 Mg	ABLE BOOK ABLE BOOK AP2B	6Q2B K	SUM EXTB	6H1A Bacl Tea	6G1E KCL Ext	CAT SA 3A EXTB ACTY	5A 6A NHAC	BD1 NHAC TO	CA CA TO	SAT NHAC	6.2 (BASE 5C3 EXTB ACTY	SATE SCI NHAC
092-146 146-182 DEPTH (0	TR 12 PRGANIO 6A1A ORGN	O O MATT 6BlA	0 0 ER) C/N	IRON 6C28 EXT FE PCT	PHOS TOTL PCT	25 (ex 6N2E	TRACTA 602D HG	ABLE BA	6Q2B K MEQ	SUM EXTB / 100	6H1A BACL TEA) G	6G1E KCL Ext	CAT SA 3A EXTB ACTY	5A 6A NHAC	8D1 NHAC	BD3 CA TO MG	SAT NHAC PCT	(BASE SC3 EXTO ACTY PCT	SATE SCI NHAC
092-146 146-182 DEPTH (0 CM	TR 12 PRGANIC 6A1A ORGN CARB PCT 1.60C	O O O O O O O O O O O O O O O O O O O	0 0 ER) C/N	IRON 6C28 EXT FE PCT	PHOS TOTL PCT	25 (ex 6N2E CA	TRACTA 602D HG	1.70A ABLE B/ 6P2B NA	6Q2B K MEQ	SUM EXT8 / 100	6H1A BACL TEA) G	6G1E KCL EXT	CAT SA 3A EXTB ACTY	5A6A NHAC)	BD1 NHAC TO CLAY	BD3 CA TO MG	5F1 SAT NHAC PGT	6.2 (BASE SC3 EXTO ACTY PCT	SAT: SC1 NHA(
092-146 146-182 DEPTH (0 CM 000-20 020-26	TR 12 PRGANIC 6A1A ORGN CARB PCT 1.60C 0.32	O O O O O O O O O O O O O O O O O O O	0 0 ER) C/N	2 11 IRON 6C28 EXT FE PCT	PHOS TOTL PCT	25 (EX 6N2E CA	18 TRACT/ 602D HG 2.5 2.8	1.70A ABLE B/ 6P2B NA 	6Q2B K MEQ 0.2 0.3	SUM EXT8 / 100	6H1A BACL TEA) G	6G1E KCL EXT 0.3	4.2 (CAT 5A3A EXTB ACTY	5A6A NHAC 1 13.9 13.6	8D1 NHAC TO CLAY 1.05 0.74	* 8D3 CA TO MG ***********************************	SF1 SAT NHAC PCT 40 26	6.2 (BASE SC3 EXTB ACTY PCT 48 40	SAT: SC1 NHA(PCT
092-146 146-182 DEPTH (0 CM CM 000-20 020-26 026-37	TR 12 RGANIC 6A1A ORGN CARB PCT 1.60C 0.32 0.23	0 0 0 MATT 6B1A NIT6 PCT -151 -036	0 0 ER } C/N	2 11 IRON 6C28 EXT FE PCT	7 PHOS TOTL PCT	25 6N2E CA (5.6 3.5 3.8	18 TRACT/ 602D HG 2.5 2.8 4.5	1.70A ABLE B/ 6P2B NA 0.2 0.2 0.3	MEQ 0.2 0.3 0.4	SUM EXTS / 100	6H1A BACL TEA) G 9.1 10.0 13.2	6G1E KCL EXT 0.3 3.5 5.2	4.2 (CAT 5A3A EXTB ACTY 17.6 16.8 22.2	5A6A NHAC) 13.9 13.6 17.5	8D1 NHAC TO CLAY 1.05 0.74	* 8D3 CA TO MG **2.2	SAT NHAC PCT 40 26 22	6.2 (BASE 5C3 EXTB ACTY PCT 48 40 41	SAT SCI NHAI PCT
092-146 146-182 DEPTH (0 CM 	TR 12 PRGANIO 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24	0 0 0 0 MATT 6B1A NIT6 PCT -151 -036 -028	0 0 0 C/N	2 11 IRON 6C28 EXT FE PCT 1.1 0.9 1.0	7 PHOS TOTL PCT	25 (ex 6N2E CA (5.6 3.5 3.8 5.7	18 TRACT/ 602D HG 2.5 2.8 4.5 8.4	1.70A ABLE B/ 6P2B NA 0.2 0.2 0.3 0.3	MEQ 0.2 0.3 0.4 0.7	SUM EXT8 / 100 8.5 6.6 9.0	6H1A BACL TEA) G 9.1 10.0 13.2 15.6	6G1E KCL EXT 0.3 3.5 5.2 6.4	4.2 (CAT 5A3A EXTB ACTY 17.6 16.8 22.2 30.7	5A6A NHAC) 13.9 13.6 17.5 25.6	8D1 NHAC TO CLAY 1.05 0.74 0.74	8D3 CA TO MG 2.2 1.3 0.8 0.7	5F1 SAT NHAC PCT 40 26 22 22	6.2 (BASE 5C3 EXT8 ACTY PCT 48 40 41	5.2 SAT: SC1 NHA(PCT
092-146 146-182 DEPTH (0 CM CM 000-20 020-26 026-37 026-37 049-65	TR 12 PRGANIC 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20	0 0 0 MATT 6B1A NIT6 PCT -151 -036	0 0 0 C/N	2 11 IRON 6C28 EXT FE PCT 1.1 0.9 1.0 0.7 3.3	7 PHOS TOTL PCT	25 (EX 6N2E CA (5.6 3.5 3.8 5.7 5.8	TRACT/ 6020 MG 2.5 2.8 4.3 8.4 9.1	1.70A ABLE B/ 6P2B NA 0.2 0.2 0.3 0.3 0.3	0.2 0.2 0.3 0.4 0.7 0.7	SUM EXT8 / 100 8.5 6.8 9.0 15.1	6H1A BACL TEA) G 9.1 10.0 13.2 15.6	6G1E KCL EXT 0.3 3.5 5.2 6.4 3.4	17.6 16.8 22.2 30.7	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3	8D1 NHAC TO CLAY 1.05 0.74 0.74 0.73 0.68	8D3 CA TO MG 2.2 1.3 0.8 0.7	5F1 SAT NHAC PCT 40 26 22 22 23	6.2 (BASE 5C3 EXT8 ACTY PCT 48 40 41 50 52	5.2 SAT: SC1 NHA(PCT 5(5)
092-146 146-182 	TR 12 PRGANIC 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16	0 0 0 0 MATT 6B1A NIT6 PCT -151 -036 -028	0 0 0 C/N	2 11 IRON 6C28 EXT FE PCT 1.1 0.9 1.0 0.7 3.3 2.7	7 PHOS TOTL PCT	25 6N2E CA (5.6 3.5 3.8 5.7 8.5	TRACT/ 6020 MG 2.5 2.8 4.5 9.1 12.8	1.70A ABLE B/ 6P2B NA 0.2 0.3 0.3 0.3	0.2 0.2 0.3 0.4 0.7 0.7	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.9 22.6	6H1A BACL TEA) G 9.1 10.0 13.2 15.6 14.4	6G1E KCL EXT 0.3 3.5 5.2 6.4	17.6 16.8 22.2 30.7 30.3 34.1	5A6A NHAC) 13.9 13.6 17.5 25.6	8D1 NHAC TO CLAY 1.05 0.74 0.74	8D3 CA TO MG 2.2 1.3 0.8 0.7	5F1 SAT NHAC PCT 40 26 22 22 23	6.2 (BASE 5C3 EXT8 ACTY PCT 48 40 41	5.2 SAT: SC1 NHA(PCT 5: 5: 5:
092-146 146-182 DEPTH (0 CM CM 000-20 020-26 026-37 026-37 049-65	TR 12 RGANIO 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16 0.07	0 0 0 0 MATT 6B1A NIT6 PCT -151 -036 -028	0 0 0 C/N	2 11 IRON 6C28 EXT FE PCT 1.1 0.9 1.0 0.7 3.3	7 PHOS TOTL PCT	25 (EX 6N2E CA (5.6 3.5 3.8 5.7 5.8	TRACT/ 6020 MG 2.5 2.8 4.3 8.4 9.1	1.70A ABLE B/ 6P2B NA 0.2 0.2 0.3 0.3 0.3	0.2 0.2 0.3 0.4 0.7 0.7	SUM EXT8 / 100 8.5 6.8 9.0 15.1	6H1A BACL TEA) G 9.1 10.0 13.2 15.6	6G1E KCL EXT 0.3 3.5 5.2 6.4 3.4 2.0	17.6 16.8 22.2 30.7	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2	8D1 NHAC TO CLAY 1.05 0.74 0.74 0.73 0.68 0.72	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7	5F1 SAT NHAC PCT 40 26 22 22 23 30	6.2 (BASE 5C3 EXTB ACTY PCT 48 40 41 50 52	5.2 5C1 NHA(PCT 65 55 66 86
092-146 146-182 	TR 12 RGANIC 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16 0.07 0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N C/N 11 9 8	IRON 6C28 EXT FE PCT 1.1 0.9 1.0 0.7 3.3 2.7 1.3	PHOS TOTL PCT	25 6N2E CA (3.6 3.5 3.8 5.7 5.8 6.8 5.0	18 TRACT/ 602D MG 2.5 2.8 4.5 8.4 112.8 6.7 3.8	1.70A ABLE B 6P28 NA 0.2 0.3 0.3 0.3 0.4 0.4	0.2 0.2 0.3 0.4 0.7 0.7 0.9 0.3	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 2-7	6G1E KCL EXT 0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0	5F1 SAT NHAC PCT 40 26 22 22 23 30 43 49	6.2 (BASE 5C3 EXT8 ACTY PCT 48 40 41 50 52 66 73 78	5.2 SAT: SC1 NHA(PCT 5: 5: 5: 6: 8: 8:
092-146 146-182 	TR 12 RGANIC 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16 0.07 0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N C/N 11 9 8	2 11 IRON 6C28 EXT FE PCT 1.1 0.9 1.0 0.7 3.3 2.7 1.1	7 PHOS TOTL PCT	25 6N2E CA (3.5 3.8 5.7 5.8 8.5 6.8 8.5	18 TRACT/ 602D MG 2.5 2.8 4.5 8.4 9.1 12.8 6.7 3.8	1.70A ABLE B 6P2B NA 0.2 0.3 0.3 0.4 0.4	6928 K MEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	6H1A BACL TEA) G 9.1 10.0 13.2 15.6 14.4 11.5 5.2 2.7	6G1E KCL EXT 0.3 3.5 5.2 6.4 3.0 0.5	4.2 (CAT SA3A EXTB ACTY 17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE SC3 EXT8 ACTY PCT 48 40 0 50 52 66 73 78	5.2 SAT: SC1 NHA(PCT 6: 5: 6: 8: 8: 8:
092-146 146-182 	TR 12 RGAN IG 6A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16 0.07 SATURG	O O O O O O O O O O O O O O O O O O O	0 0 ER) C/N 11 9 9 8 8	IRON 6C2B EXT FE PCT 1.1 0.9 1.0 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5.6 3.5 3.8 5.7 5.8 8.5 6.8 5.0	18 TRACT/ 602D MG 2.5 2.8 4.5 8.4 9.1 12.8 6.7 3.8	1.70A ABLE B 6P2B NA 0.2 0.3 0.3 0.4 0.4 0.4 8A1A	6928 K MEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.2 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-3 5-2 2-7	6G1E KCL EXT 0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0	5F1 SAT NHAC PCT 40 26 22 22 23 30 43 49	6.2 (BASE \$C3 EXTB ACTY PCT 48 40 41 50 52 66 73 78 ATTERE	5.2 SAT! SC1 NHA(PCT 6: 5: 5: 6: 8: 8: 9:
092-146 146-182 	TR 12 RGAN II 6A1A ORGN CARB PC T 1.60C 0.32 0.23 0.24 0.20 0.07 0.03 SATUR: 8E1 1	O O O O O O O O O O O O O O O O O O O	0 0 ER) C/N	2 11 IRON 6C28 EXT FE PCT 1.1 0.9 1.0 0.7 3.3 2.7 1.1	7 PHOS TOTL PCT	25 6N2E CA. (3.6 3.5 3.8 5.7 5.8 6.5 6.8 5.7 5.8	TRACT/ 602D MG 2.5 2.8 4.5 8.4 9.4 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.4 0.4 0.3	6928 K MEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	6H1A BACL TEA) G 9.1 10.0 13.2 15.6 14.4 11.5 5.2 2.7	6G1E KCL EXT 0.3 3.5 5.2 6.4 3.4 2.0 0.5	4.2 (CAT SA3A EXTB ACTY 17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 5C3 EXTB ACTY PCT 48 40 41 50 52 66 73 78 ATTER8 4FI LQID	SAT: SC1 NHA(PCT 6: 5: 6: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
092-146 146-182 	TR 12 RGAN IG 6A1A CARB PCT 1.60C 0.32 0.24 0.20 0.12 0.07 0.03 SATUR: 8E1 : REST OHM—	O O O O O O O O O O O O O O O O O O O	0 0 0 1 1 1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IRON 6C28 EXT FET 1.1 0.9 1.0 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (18 TRACT/ 602D MG 2.5 2.8 4.5 8.4 9.1 12.8 6.7 3.8	1.70A ABLE B, 6P2B NA 0.2 0.3 0.3 0.4 0.4 0.4 8A1A EC	6928 K MEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-3 5-2 2-7 SATURA	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 216.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49 	6.2 (BASE 9C3 EXTB ACTY PCT 48 40 41 50 52 266 73 78 ATTERE 4F1 LQID	SAT: SC1 NHA(PCT 6: 5: 6: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
092-146 146-182 	TR 12 RGAN II 6A1A ORGN CARB PC T 1.60C 0.32 0.23 0.24 0.20 0.07 0.03 SATUR: 8E1 1	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 A A A A A A A A A A A A A A A A	2 11 IRON 6C28 EXT FE PCT 1.1 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5-6 3-5 3-8 5-7 5-8 6-8 5-0 SALT 8D5 TOTL SOLU	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 9C3 EXTB ACTY PCT 48 40 41 50 52 266 73 78 ATTERE 4F1 LQID	SAT: SC1 NHA(PCT 6: 5: 6: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
092-146 146-182 DEPTH (0 CM 000-20 020-26 020-37 049-65 065-92 049-182 DEPTH (TR 12 RGAN IG 6A1A CARB PCT 1.60C 0.32 0.24 0.20 0.10 0.07 0.03 SATUR: 8E1 : REST OHM—	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 A A A A A A A A A A A A A A A A	IRON 6C28 EXT FET 1.1 0.9 1.0 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 9C3 EXTB ACTY PCT 48 40 41 50 52 266 73 78 ATTERE 4F1 LQID	SAT SC1 NHA PCT 65 55 66 88 99
092-146 146-182 	TR 12 RGAN IG 6A1A CARB PCT 1.60C 0.32 0.24 0.20 0.10 0.07 0.03 SATUR: 8E1 : REST OHM—	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 A A A A A A A A A A A A A A A A	2 11 IRON 6C28 EXT FE PCT 1.1 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5-6 3-5 3-8 5-7 5-8 6-8 5-0 SALT 8D5 TOTL SOLU	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 9C3 EXTB ACTY PCT 48 400 41 50 52 66 73 78 ATTERE 4F1 LQID LMIT	SAT SCI NHA PCT 655568899
092-146 146-182 DEPTH (0 CM 000-20 020-26 026-37 037-49 049-65 065-92 049-182 DEPTH (TR 12 RGAN IG 6A1A CARB PCT 1.60C 0.32 0.24 0.20 0.10 0.07 0.03 SATUR: 8E1 : REST OHM—	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 A A A A A A A A A A A A A A A A	2 11 IRON 6C28 EXT FE PCT 1.1 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5-6 3-5 3-8 5-7 5-8 6-8 5-0 SALT 8D5 TOTL SOLU	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 9C3 EXTB ACTY PCT 48 400 41 50 52 66 73 78 ATTERE 4F1 LQID LMIT	SATINHA PCT 65 55 68 89 ERG PLST
092-146 146-182 	TR 12 RGAN IG 6A1A CARB PCT 1.60C 0.32 0.24 0.20 0.10 0.07 0.03 SATUR: 8E1 : REST OHM—	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 A A A A A A A A A A A A A A A A	2 11 IRON 6C28 EXT FE PCT 1.1 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5-6 3-5 3-8 5-7 5-8 6-8 5-0 SALT 8D5 TOTL SOLU	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 5C3 EXTB ACTY PCT 48 40 40 50 52 66 73 78 ATTERE 4F1 LQID LMIT PCT	5. SAT1 NHA PCT 65 55 68 89 9 ERG PLST INDX
092-146 146-182 	TR 12 RGAN IG 6A1A CARB PCT 1.60C 0.32 0.24 0.20 0.10 0.07 0.03 SATUR: 8E1 : REST OHM—	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 A A A A A A A A A A A A A A A A	2 11 IRON 6C28 EXT FE PCT 1.1 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5-6 3-5 3-8 5-7 5-8 6-8 5-0 SALT 8D5 TOTL SOLU	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 9C3 EXTB ACTY PCT 48 400 41 50 52 66 73 78 ATTERE 4F1 LQID LMIT	SAT SCI NHA PCT 655568899
092-146 146-182 	TR 12 RGANIC 66A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16 0.07 0.03 SATUR: 8E1 CM	0 0 0 0 0 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 C/N C/N 11 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IRON 6C28 EXT FE PCT 1-1 0.9 1.0 0.7 3.3 2.7 1.1 NA 5D2 ESP	PHOS TOTL PCT	25 (EX 6N2E CA 5.6 3.5 3.8 5.7 5.8 5.6 6.8 5.0 SALT 805 TOTL SOLU PPM	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.4 0.4 0.4 0.4 CM BAIA EC	6928 K MEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2 6N18 CA	SUM EXT8 / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	6H1A BACL TEA 9-1 10-0 13-2 15-6 14-4 11-5 2-7 SATURF 6P1B NA	6G1E KCL EXT 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 5C3 EXTB ACTY PCT 48 40 40 50 52 66 73 78 ATTERE 4F1 LQID LMIT PCT	5.:: SAT: 5C1 NHA() PCT 6.55.5.668() 8() 8() 9() ERG 4F2 INDX
092-146 146-182 	TR 12 RGANIC 66A1A ORGN CARB PCT 1.60C 0.32 0.23 0.24 0.20 0.16 0.07 0.03 SATUR: 8E1 CM	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N C/N 11 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 11 IRON 6C28 EXT FE PCT 1.1 0.7 3.3 2.7 1.3 1.1	PHOS TOTL PCT	25 6N2E CA (5-6 3-5 3-8 5-7 5-8 6-8 5-0 SALT 8D5 TOTL SOLU	TRACT/ 6020 MG 2.5 2.8 4.5 8.4.5 8.4.5 8.4.5 9.1 12.8 6.7 3.8	1.70A ABLE B. 6P2B NA 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 CMMH0S/	6Q28 KMEQ 0.2 0.3 0.4 0.7 0.7 0.9 0.3 0.2	SUM EXTB / 100 8.5 6.8 9.0 15.1 15.9 22.6 14.2 9.3	9-1 10-0 13-2 15-6 14-4 11-5 5-2 2-7 SATURE 6P18	0.3 3.5 5.2 6.4 3.4 2.0 0.5	17.6 16.8 22.2 30.7 30.3 34.1 19.4 12.0	5A6A NHAC) 13.9 13.6 17.5 25.6 25.3 28.2 16.0 10.3	8D1 NHAC TO CLAY 1.05 0.74 0.73 0.68 0.72 1.98 2.71	8D3 CA TO MG 2.2 1.3 0.8 0.7 0.6 0.7 1.0 1.3	5F1 SAT NHAC PCT 40 26 22 23 30 43 49	6.2 (BASE 5C3 EXTB ACTY PCT 48 40 40 50 52 66 73 78 ATTERE 4F1 LQID LMIT PCT	5.:: SAT: 5C1 NHA() PCT 6.55.5.668() 8() 8() 9() ERG 4F2 INDX

⁽A) ESTIMATED.

(B) MICRO-PENETRATION RESISTANCE ~ A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD. EQUILIBRATED AT 1/10- BAR. A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

Soil classification: Aquic Glossoboralfs; fine, mixed.

Soil: Dolph.

Soil No.: S70WI-71-3.

Location: Wood County, Wisconsin; NW4, SE4, SW4, NE4, Sec. 23, T. 23 N., R. 5 E.; 525 feet north of road inter-

section.

Climate: Humid continental; mean annual temperature is about 43° F; mean annual precipitation is about 30 inches;

and frost-free season is about 133 days.

Vegetation and land use: Original vegetation was deciduous forests consisting mainly of elm, oak, soft maple, and

some white pine. Much of this land is in pasture or woodland. A few areas are being used

Parent material: Thin silty sediments over clay residuum from micaceous schist. Physiography: Nearly level or depressional areas in rock-controlled upland.

Topography: Nearly level site with a 1 percent plane slope.

Drainage: Poorly drained.

Ground water: Deep Erosion: None Permeability: Slow

Described by: Paul H. Carroll

(Colors are for moist soil unless otherwise stated)

701.935 0 to 20 cm (0 to 8 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak medium subangular blocky structure; friable; many fine fibrous roots; medium acid; abrupt smooth boundary.

A2 70L936 20 to 26 cm (8 to 10 inches). Grayish brown (10YR 5/2) silt loam with many fine prominent mottles of strong brown (7.5YR 5/6-5/8); weak thin platy structure; friable; many fine fibrous roots; strongly acid; clear wavy boundary.

701937 26 to 37 cm (10 to 15 inches). Grayish brown (10YR 5/2) and light brownish gray (10YR 6/2) silt loam (A2) with common fine prominent mottles of strong brown (7.5YR 5/6-5/8); weak medium prismatic structure parting to very weak fine subangular blocky structure; friable; isolated remnants of reddish brown (5YR 4/4) and yellowish red (5YR 4/6) heavy silt loam (Bt) occupy about 20 percent of the horizon; common fine fibrous roots; few thin clay films on faces of peds and in tubular pores of the Bt remnants; strongly acid; clear wavy boundary.

701938 37 to 49 cm (15 to 19 inches). Reddish brown (5YR 4/4) and weak red (2.5YR 4/2) clay (Bt) with many fine distinct and prominent mottles of strong brown (7.5YR 5/6-5/8); moderate medium prismatic structure parting to weak fine angular blocky structure; firm; many thin dark brown (10YR 3/3) clay films on faces of peds and in tubular pores of the Bt portion of the horizon; tongues of reddish gray (5YR 5/2), brown (7.5YR 5/2) and light brownish gray (10YR 6/2) silt loam and silty clay loam (A2) penetrate this horizon from above and occupy approximately 20 per-Cent of the horizon; few fine fibrous roots; strongly acid; clear wavy boundary.

IIB21t 701939 49 to 65 cm (19 to 26 inches). Dark reddish brown (2.5YR 3/4) clay with few medium distinct mottles of yellowish red (5YR 5/6); moderate medium prismatic structure parting to moderate fine and very fine angular blocky structure; very firm; continuous thin clay films on faces of peds and in tubular pores; few (2 to 3 percent by volume) fine weathered rock fragments throughout horizon; very strongly acid; gradual wavy boundary.

IIB22t 70L940 65 to 92 cm (26 to 36 inches). Dark reddish brown (2.5YR 3/4) clay; weak medium prismatic structure parting to weak medium and fine angular blocky structure; very firm; common thin clay films on faces of peds and continuous flows in tubular pores; few (2 to 3 percent by volume) fine weathered rock fragments throughout horizon: very strongly acid; clear wavy boundary.

IIC 70L941 92 to 146 cm (36 to 57 inches). Variegated olive gray (5Y 4/2 and 5/2) and reddish brown (5YR and 2.5YR 4/4) very fine sandy loam; massive to weak coarse platy structure; friable; few moderately thick (2 to 4 inches) tongues of clay loam extend 10 to 12 inches into this horizon from the B2t horizon above; strongly acid; clear wavy boundary.

IICR 70L942 146 to 182 cm (57 to 71 inches). Dark olive gray (5Y 3/2) olive yellow (5Y 6/6) and strong brown (7.5YR 5/6) mica schist bedrock; moderately soft (can be chopped out with spade); thin clay coatings of light olive brown (2.5Y 5/4) on some schist fragments near upper boundary; slightly acid.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - STOWIS-37-1

COUNTY - - - MARATHON

GENERAL METHODS- - -14,1818,241,28

SAMPLE NOS. 70L862-70L869

DEPTH	HOR I	ZON	(·			LE SIZE SAND -								FINE		
			SAND	SILT	CLAY			CORS					FNSI			11	CLAY		15-
			2-	.05-	LT	LT	2-	1-			.10-		.02		- SAND	. 2-	to	CLAY	
			.05					.5	.25	.10	.05				21	.02	CLAY	CLAI	TO
CM									PC1									PCT	CLAY
000-22	AP			76.5	9.8		.6		3.3	4.0			39.0			43.3			. 7
22-30	A2			68.5	8.5		1.7		5.8	6.8	6.0	35.2				43.8			
030-41	A&B		30.7		12.6		3.4		7.9	9.3	6.6	30.2			24.1	40.2			-4
041-61	2B&A			46.1	12.6		4.6			12.7	10.8		23.3			39.8			• 4
061-97	2B2T			35.4	11.0		6.4		6.1	15.2	17.2	17.8			36.4				- 4
797-127				35.3	9.3		7.5			15.2	19.5	17.9			35.9	47.2			
127-177			61.3	31.7	7.0	3.9	12.7	12.3	5.7	14.0	16.4	15.7	16.0		44.7	41.0	56		- 5
000-22	AP	(A)																	
EPTH (3B, 3B													
• • • • • • • • • • • • • • • • • • • •											4810	481C	482	4C1			BALA		
	GT	GT		20-5					DVEN			1/3-	15-	WRD		LT	LT	1/1	1/2
	2	75					PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	. 002		CAC
CM	PCT		(- PCT I	LT 75	- 111					PCT	PCT	PCT	CM		PCT	PCT		
00-22	1	0.	TR_	1	1_	88		1.41		.012		27.3	7.2	.29				6.0	5.
22-30	1	0	0	1	1	79	. 2	1.64	1.66	.004		17.8	4.4	.22				6.0	5.
30-41	2	0	TR	2	1	72	3		1.63	.006		16.3	6.0	.17				5.4	4.
41-61	1	0	0	1	1	64	2		1.72	.016		18.2	5.7	•50	3.10			4.7	4.
61-97	3					57	0	1.75	1.85	-019	17.2	15.7		.19	5.10	:		4.4	3.
	TR	0	TR	o	1	56	1	1.808					4.9					4.5	3.
		-																	4.
)97-127 127-177	3	Ŏ	0	1	2	47	3	1.908					3.5 6.7					4.6	
		0	0	2	, 1	47	3						6.7					5.8	5.
27-177	3 1 DRGANI	Ö C MAT1	0 (ER)	2 I RON	. 1	(E)	3 CTRACT	ABLE B	ASES SE		ACTY	AL	6.7 (CAT	EXCH)	RATIO		CA	5.8 (BAS	5. SA1
127-177 300-22	3 1 DRGANIO	O MATI	0 (ER)	2 I RON 6C 28	PHOS	(E	3 TRACT 6020	ABLE B	ASES SE	14A)	ACTY 6H1A	AL 6G1E	6.7 (CAT 5A3A	EXCH) 5A6A	8D1	8D3	5F1	5.8 (BASE 5C3	5. SA1 5C1
127-177 300-22	3 1 DRGANIO 6A1A DRGN	Ö C MAT1	0 (ER)	I RON 6C 26 EXT	. 1	(E	3 CTRACT	ABLE B	ASES SE	14A) SUM	ACTY 6H1A BACL	AL 6G1E KCL	6.7 (CAT 5A3A EXTB	EXCH) 5A6A	8D1 NHAC	BD3 CA	5F1 SAT	5.8 (8ASE 5C3 EXTB	5. SA1 5C1
27-177 100-22	3 1 DRGANIO	O MATI	0 (ER)	2 I RON 6C 28	, 1 PHOS TOTL	(E	TRACT 6020 MG	ABLE B	ASES 58 6028 K	SUM EXTB	ACTY 6H1A BACL TEA	AL 6G1E KCL EXT	6.7 (CAT 5A3A EXTB ACTY	EXCH) 5A6A NHAC	BD1 NHAC TO	BD3 CA TO	5F1	5.8 (BASE 5C3	5. SA1 501 NH/
27-177 100-22 DEPTH ((3 1 DRGANIO 6A1A ORGN CARB PCT	O MATI 681A NITG	0 (ER) (C/N	IRON 6C28 EXT FE PCT	PHOS TOTL PCT	(E) 6NZE CA	TRACT 602D MG	ABLE BI 6P2B NA	ASES SE 6028 K	SUM EXTB	ACTY 6H1A BACL TEA G	AL 6G1E KCL EXT	6.7 (CAT 5A3A EXTB ACTY	EXCH) 5A6A NHAC	BD1 NHAC TO	BD3 CA TO	SAT NHAC	5.8 (BASE 5C3 EXTB ACTY	SAI SCI NHA
27-177 900-22 PEPTH ((3 1 DRGANII 6A1A ORGN CARB PCT	O MATI 681A NITG PCT	0 (ER) (C/N	IRON 6C28 EXT FE PCT	PHOS TOTL PCT	(E) 6NZE CA	3 (TRACT 602D MG	ABLE BE	ASES 58 6028 K MEQ	SUM EXTB / 100	ACTY 6H1A BACL TEA G	AL 6G1E KCL EXT	6.7 (CAT 5A3A EXTB ACTY	EXCH) 5A6A NHAC	BD1 NHAC TO CLAY	BD3 CA TO MG	5F1 SAT NHAC PCT	(BASI 5C3 EXTB ACTY PCT	5. SA1 501 NH/
27-177 00-22 EPTH (C	3 1 DRGANII 6A1A ORGN CARB PCT 2-13D 0-37	O MATI 681A NITG PCT -187	0 (ER) (C/N	2 IRON 6C28 EXT FE PCT	PHOS TOTL PCT	(E) 6N2E CA (3 (TRACT 6020 MG	ABLE B: 6P2B NA 0.1	ASES 58 6028 K MEQ 0.1	SUM EXTB / 100 10.2 5.4	ACTY 6H1A BACL TEA G	AL 6G1E KCL EXT	6.7 (CAT 5A3A EXTB ACTY	EXCH) SA6A NHAC	BD1 NHAC TO CLAY	BD3 CA TO MG	SAT NHAC PCT	5.8 (BASI 5C3 EXTB ACTY PCT	SAI SC: NH/
CM 000-22 000-22 000-22 022-30	3 1 DRGANII 6A1A ORGN CARB PCT 2-13D 0-37 0-20	0 MAT1 681A NITG PCT .187 .035 .032	0 (ER) C/N	2 IRON 6C28 EXT FE PCT 0.9 1.0	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4	3 CTRACT 602D MG 1.7 0.9	ABLE B 6P2B NA 0.1 0.2 0.2	A SES 58 6028 K HEQ 0.1 0.1	SUM EXTB / 100 10-2 5-4 6-9	ACTY 6H1A BACL TEA) G 8.0 4.4 5.7	AL 6G1E KCL EXT	6.7 (CAT 5A3A EXTB ACTY 18.2 9.8 12.6	EXCH) 5A6A NHAC 13.8 8.1 11.0	8D1 NHAC TO CLAY 1.41 0.95 0.87	8D3 CA TO MG 4.9 4.7	5F1 SAT NHAC PCT 60 52	5.8 (BASE 5C3 EXTB ACTY PCT 56 55	5. SA1 501 NH/
CM 000-22 000-22 000-22 022-30 030-41 041-61	3 1 DRGANI(6A1A ORGN CARB PCT 2-13D 0-37 0-20 0-15	O MATI 681A NITG PCT -187	0 (ER) C/N	2 IRUN 6C 26 EXT FE PCT 0.9 1.0 1.2	PHOS TOTL PCT	(E) 6N2E CA (8.3 4.2 5.4 4.1	3 (TRACT 6020 MG	ABLE B 6PZB NA 0-1 0-2 0-2	A SES 58 6028 K HEQ 0.1 0.1 0.2 0.2	SUM EXTB / 100 10.2 5.4	ACTY 6H1A BACL TEA G	AL 6G1E KCL EXT	6.7 (CAT 5A3A EXTB ACTY 18.2 9.8 12.6 13.5	EXCH) 5A6A NHAC 13.8 8.1 11.0	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99	8D3 CA TO MG 4.9 4.7	SAT NHAC PCT 60 52	S.8 (BASE SC3 EXTB ACTY PCT S6 55	5. SA1 501 NH/
CM CM 000-22 000-22 022-30 030-41 041-61	3 1 5A1A 0RGN CARB PCT 2-13D 0-37 0-15 0-06	0 MAT1 681A NITG PCT .187 .035 .032	0 (ER) C/N	2 IRON 6C28 EXT FE PCT 0.9 1.0	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4	3 (TRACT 602D MG 1.7 0.9 1.1	ABLE B 6P2B NA 0.1 0.2 0.2 0.2	A SES 58 6028 K HEQ 0.1 0.1 0.2 0.2	SUM EXTB / 100 10.2 5.4 6.9 5.8	ACTY 6H1A BACL TEA) G 8.0 4.4 5.7 7.7	AL 6G1E KCL EXT	10.2 9.8 12.6 13.5 11.2	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99	8D3 CA TO MG 4.9 4.7 4.9 3.2	5F1 SAT NHAC PCT 60 52 49 33	5.8 (BASI 5C3 EXTB ACTY PCT 56 55	5 SA1 5C1 NHA
CM CM 000-22 022-30 030-41 041-61 097-127	3 1 0RGANI(6A1A 0RGN CARB PCT 2-13D 0-37 0-25 0-06	0 MAT1 681A NITG PCT .187 .035 .032	0 (ER) C/N	2 IRDN 6C28 EXT FE PCT 0.9 1.0 1.2 1.3	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4 4.1 2.8	1.7 0.9 1.3 1.3 1.5	ABLE B. 6PZB NA 0.1 0.2 0.2 0.2 0.1	0.1 0.1 0.2 0.2 0.2	SUM EXTB / 100 10.2 5.4 6.9 5.8 4.4	8.0 4.4 5.7 6.8	AL 6G1E KCL EXT 	10.2 9.8 12.5 11.2 14.5	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85	8D3 CA TO MG 4.9 4.7 4.9 3.2 2.2	5F1 SAT NHAC PCT 60 52 49 33	5.8 (BASI 5C3 EXTB ACTY PCT 56 55 43	5.
CM CM 100-22 100-22 100-22 102-30 130-41 141-61 197-127 27-177	3 1 6A1A ORGN CARB PC T 2-13D 0-37 0-20 0-15 0-06 0-04	0 MAT1 681A NITG PCT .187 .035 .032	0 (FER) (C/N	2 IRON 6C26 EXT FE PCT 0.9 1.0 1.2	PHOS TOTL	(E) 6NZE CA (8.3 4.2 5.4 4.1 2.8	1.7 6020 MG 1.7 0.9 1.1 1.3	ABLE B. 6PZB NA 0.1 0.2 0.2 0.2 0.1	0.1 0.1 0.2 0.2 0.2	SUM EXTB / 100 10.2 5.4 6.9 5.8 4.4 6.3	8.0 4.4 5.7 7.7 6.8 8.2	0.5 1.3 1.2	6.7 (CAT 5A3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65	8D3 CA TO MG 4.9 4.7 4.9 3.2 2.2	5F1 SAT NHAC PCT 60 52 49 33 30	5.8 (BASI 5C3 EXTB ACTY PCT 56 55 55 43 39	5. 5.1 5.01 NHA PC1
CM	3 1 6A1A 0RGANI CARB PCT 2-13D 0-37 0-20 0-15 0-04 0-07 2-04	0 MATI 681A NITG PCT -187 -032 -017	0 (ER) (C/N	2 IRON 6C28 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8	PHOS TOTL PCT	(E) 6NZE CA (~ 8.3 4.2 5.4 4.1 2.8 4.4 3.9	1.7 6020 MG 	ABLE B 6PZB NA 0.1 0.2 0.2 0.2 0.2	ASES 58 6028 K MEQ 0.1 0.2 0.2 0.2 0.2	SUM EXTB // 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	8.0 4.4 5.7 7.6 8.2 4.8	0.5 1.3 1.2	10.2 9.8 12.6 13.5 11.2 14.5	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO 1 CLAY 1.41 0.95 0.87 0.99 0.85 1.65	8D3 CA TO MG 4.9 3.2 2.2 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29	5.8 (BASI 5C3 EXTB ACTY PCT 56 55 55 43 39 43 53	5. SA1 501 NH/
CM CM 000-22 000-22 022-30 030-41 041-61	3 1 DRGANII 6A1A ORGN CARB PC Y 2-13D 0-37 0-20 0-15 0-06 0-04 2-04	0	0 C/N C/N 11 11 11 11 11 11 11 11 11 11 11 11 11	2 IRON 6C28 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8	PHOS TOTL PCT	(E: 6NZE CA (8.3 4.2 5.4 4.1 2.8 4.4 3.9	1.7 6020 MG 1.7 0.9 1.1 1.3 1.3 1.5	ABLE B 6P2B NA 	ASES 58 6028 K MEQ 0.1 0.2 0.2 0.2 0.2	SUM EXTB / / 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	### ACTY 6H1A BACL TEA G ### 5.7 7.7 6.8 ##.2 4.8	AL 6G1E KCL EXT 0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTRA 10.2 9.8 12.6 13.5 11.2 14.5	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 4.9 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASI 5C3 EXTB ACTY PCT 56 55 53 43 39 43 53	SAI SCI NH/ PCI
CM	3 1 6A1A ORGANI CARB PCT 2-13D 0-37 0-25 0-04 0-04 2-04 (SATUR)	0 MATI 681A NITG PCT -187 -032 -017 -176 ATED F	0 (FER) (C/N) (11) (3) 11 (4) 12 (4) 12 (4) 12	2 IRDN 6C26 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8	PHOS TOTL PCT	(E-6NZE CA (B.3 4.2 5.4 4.1 2.8 4.4 3.9	1.7 6020 MG 1.7 0.9 1.1 1.3 1.3 1.5	ABLE B 6P2B NA 0.1 0.2 0.2 0.2 0.1 0.2 0.2	ASES 58 6026 K MEQ 0.1 0.2 0.2 0.2 0.2 0.2	SUM EXTB 7 / 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	8.0 4.4 5.7 7.7 6.8 8.2 4.8 SATURA 6P1B	AL 6G1E KCL EXT 0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTV 10.2 9.8 12.6 13.5 11.2 14.5 10.2	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 4.9 3.2 2.2 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASI 5C3 EXTB ACTY PCT 56 55 55 43 39 43 53	SAL SCI NHI
CM	3 1 DRGAN I 6A1A ORGN CARB PC T 2-13D 0-37 0-20 0-15 0-06 0-04 0-07 2-04	0 MATI 681A NITG PCT -187 -032 -017 -176 ATED F	0 C/N C/N 11 11 11 11 11 11 11 11 11 11 11 11 11	2 IRON 6C28 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8	PHOS TOTL PCT	(E' 6NZE CA (8+3 4+2 5+4 4+1 2+8 4+4 3+9 SALY BD5	1.7 6020 MG 1.7 0.99 1.1 1.3 1.3 1.5 1.1	ABLE B 6P2B NA	ASES 58 6028 K MEQ 0.1 0.2 0.2 0.2 0.2	SUM EXTB / / 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	### ACTY 6H1A BACL TEA G ### 5.7 7.7 6.8 ##.2 4.8	AL 6G1E KCL EXT 0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTRA 10.2 9.8 12.6 13.5 11.2 14.5	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 4.9 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASE 5C3 EXTB ACTY PCT 56 55 55 43 39 43 53	5. SA1 5C1 NHA PC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27-177 00-22 EPTH (C CM 00-22 22-30-41 41-61 61-97 97-127 27-177 00-22	3 1 6A1A ORGANI CARB PCT 2-13D 0-37 0-25 0-04 0-04 2-04 (SATUR)	0 MATI 681A NITG PCT -187 -032 -017 -176 ATED F	0 (FER) (C/N) (11) (3) 11 (4) 12 (4) 12 (4) 12	2 IRDN 6C26 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8	PHOS TOTL PCT	(E-6NZE CA (B.3 4.2 5.4 4.1 2.8 4.4 3.9	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.6 6P2B ABA EC MMHOS/	ASES 58 6026 K MEQ 0.1 0.2 0.2 0.2 0.2 0.2	SUM EXTB // 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	ACTY 6HIA BACL TEA 5-7 7-7 6-8 8-2 4-8 SATURA 6P18 NA	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASE 5C3) EXTB ACTY PCT 56 55 53 43 39 43 53 ATTERE	SAT SCI NH/
CM CM 000-22 222-30 330-41 44-61 661-97 197-127 27-177 000-22	3 1 6A1A ORGN CARB PC 7 0.37 0.20 0.15 0.04 0.04 0.07 2.04	0 MATI 681A NITG PCT -187 -032 -017 -176 ATED F	0 C/N C/N 11 3 11 2 7 12 8 12 8 H20	2 IRUN 6C26 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E: 6NZE CA	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.6 6P2B ABA EC MMHOS/	ASES 58 6028 K HEQ 0.1 0.2 0.2 0.2 0.2 0.2	SUM EXTB // 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	ACTY 6HIA BACL TEA 5-7 7-7 6-8 8-2 4-8 SATURA 6P18 NA	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASE 5C3) EXTB ACTY PCT 56 55 53 43 39 43 53 ATTERE	SAN SCIENTIFIC SCIENTI
CM OOO-22 1000-27 1000-27 1000-27 1000-27 1000-27 1000-27 1000-27 1000-27 1000-27 1000-27 1000-27	3 1 6A1A ORGN CARB PC 7 0.37 0.20 0.15 0.04 0.04 0.07 2.04	0 MATI 681A NITG PCT -187 -032 -017 -176 ATED F	0 C/N C/N 11 3 11 2 7 12 8 12 8 H20	2 IRUN 6C26 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E: 6NZE CA	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.6 6P2B ABA EC MMHOS/	ASES 58 6026 K MEQ 0.1 0.2 0.2 0.2 0.2 0.2	SUM EXTB // 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	ACTY 6HIA BACL TEA 5-7 7-7 6-8 8-2 4-8 SATURA 6P18 NA	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASI SC3 EXTB ACTY PCT 56 55 52 43 39 43 53 ATTER8 4FI LQID LMIT PCT	SA SGI NHI
CM CM 100-22 122-30 130-41 141-61 197-127 127-127 100-22 CH CM	3 1 6A1A ORGN CARB PCT 2-13D 0-37 0-20 0-15 0-06 0-04 2-04	0	0 C/N C/N 111 12 12 12 12 12 12 12 12 12 12 12 12	2 IRUN 6C26 EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E: 6NZE CA	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.6 6P2B ABA EC MMHOS/	ASES 58 6026 K MEQ 0.1 0.2 0.2 0.2 0.2 0.2	SUM EXTB // 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	ACTY 6HIA BACL TEA 5-7 7-7 6-8 8-2 4-8 SATURA 6P18 NA	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASI SC3 EXTB ACTY PCT 56 55 52 43 39 43 53 ATTER8 4FI LQID LMIT PCT	SA SC NHI
CM	3 1 6A1A ORGN CARB PCT 2-13D 0-37 0-20 0-15 0-06 0-04 2-04	0	0 C/N C/N 11 3 11 2 7 12 8 12 8 H20	2 IRON 6C2B EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4 4.1 2.8 4.4 3.9 SALT 8D5 TOTL SOLU PPM	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 	ASES 58 6026 KMEQ 0.1 0.2 0.2 0.2 0.2 0.2 6N1B CA	SUM EXTB 7 100 10-2 5-4 6-9 5-8 4-4 6-3 5-4	## ACTY 6HIA BACL TEA G	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASI SC3 EXTB ACTY PCT 56 55 52 43 39 43 53 ATTER8 4FI LQID LMIT PCT	SA SC NHI
CM CM 100-22 100-22 100-22 100-22 100-21 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-23 100-23	3 1 6A1A ORGN CARB PCT 2-13D 0-37 0-20 0-15 0-06 0-04 2-04	0	0 C/N C/N 111 12 12 12 12 12 12 12 12 12 12 12 12	2 IRON 6C2B EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4 4.1 2.8 4.4 3.9 SALT 8D5 TOTL SOLU PPM	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 	ASES 58 6026 KMEQ 0.1 0.2 0.2 0.2 0.2 0.2 6N1B CA	SUM EXTB / 100 10.2 5.4 6.9 7.8 4.4 6.3 5.4	## ACTY 6HIA BACL TEA G	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASI SC3 EXTB ACTY PCT 56 55 52 43 39 43 53 ATTER8 4FI LQID LMIT PCT	SA SCINHI
CM CM CM 000-22 122-30 130-41 141-61 197-127 127-177 100-22 CM CM CM CM CM 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-22	3 1 10 6A1A ORGN CARB PCT 2-13D 0-37 0-20 0-15 0-06 0-04 (SATUR: REST DHM— CM	0 C MATA MATA MATA MATA MATA MATA MATA MA	0 (FR) (C/N) (11) (11) (11) (11) (11) (11) (11) (2 IRON 6C2B EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4 4.1 2.8 4.4 3.9 SALT 8D5 TOTL SOLU PPM	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 	ASES 58 6026 KMEQ 0.1 0.2 0.2 0.2 0.2 0.2 6N1B CA	SUM EXTB 7 100 10.2 5.4 6.9 5.8 4.4 6.3 5.4	## ACTY 6HIA BACL TEA G	0.5 1.3 1.2 1.3 0.6	6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASE SC3) EXTB ACTY PCT 56 55 55 43 39 43 53 ATTERE 4F1 LQ10 LMIT PCT 346	SATISCIE SATISCI
CM CM 100-22 100-22 100-22 100-22 100-21 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-22 100-23 100-23	3 1 10 6A1A ORGN CARB PCT 2-13D 0-37 0-20 0-15 0-06 0-04 (SATUR: REST DHM— CM	0	0 C/N C/N 111 12 12 12 12 12 12 12 12 12 12 12 12	2 IRON 6C2B EXT FE PCT 0.9 1.0 1.2 1.3 0.8 0.8 0.6	PHOS TOTL PCT	(E) 6NZE CA (8.3 4.2 5.4 4.1 2.8 4.4 3.9 SALT BD5 TOTL SOLU PPM	1.7 6020 MG 1.7 0.9 1.1 1.3 1.5 1.1	ABLE B 6P2B NA 	ASES 58 6028 K HEQ 0.1 0.2 0.2 0.2 0.2 0.2	SUM EXTB / 100 10.2 5.4 6.9 7.8 4.4 6.3 5.4	## ACTY GHIA BACL TEA G	0.5 1.3 1.2 1.3 0.6 TION (6.7 (CAT 5A 3A EXTB ACTY 10.2 9.8 12.6 13.5 11.2 14.5 10.2 EXTRACT 611A CO3	EXCH) 5A6A NHAC 13.8 8.1 11.0 12.5 9.4 15.3 9.9	8D1 NHAC TO CLAY 1.41 0.95 0.87 0.99 0.85 1.65 1.41	8D3 CA TO MG 4.9 4.7 3.2 2.2 2.9 3.5	5F1 SAT NHAC PCT 60 52 49 33 30 29 39	5.8 (BASE SC3) EXTB ACTY PCT 56 55 55 43 39 43 53 ATTERE 4F1 LQ10 LMIT PCT 346	SA SCINHI

⁽A) COMPOSITE OF SEVERAL SURFACE SAMPLES.
(B) ESTIMATED.
(C) MICRO-PENETRATION RESISTANCE - A ROD S ESTIMATED.

MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

(D) ORGANIC CARBON IS 8 KG/M SO TO A DEPTH OF 1 M (6A).

(E) DETERMINED BY SOIL MECHANICS LAB - SCS, LINCOLM, NE.

Soil classification: Typic Glossoboralfs; coarse-loamy, mixed.

Soil: EauPleine.

Soil No.: S70WI-37-1

Location: Marathon County, Wisconsin; NE%, NE%, Sec. 13, T. 26 N., R. 4 E.; 210 feet and 800 feet west of inter-

section of county road C and a town road.

Climate: Humid continental; mean annual temperature is about 43° F; mean annual precipitation is about 30 inches;

and frost-free season is about 133 days.

Vegetation and land use: Original vegetation was mixed coniferous and deciduous forests. Much of this land has been cleared for general farming. Corn, small grains, and forages are the principal crops.

Parent material: Acolian acdiments over residuum from gneissic rocks high in mica.

Physiography: Rock-controlled uplands. Gently sloping to sloping relief.

Topography: Site is on a 3-to 4-percent plane slope with a northeast aspect.

Drainage: Well and moderately well drained.

Ground water: Deep. Erosion: None to *light. Permeability: Moderate. Described by Paul H. Carroll.

(Colors are for moist soil unless otherwise noted)

Ap 70L862 0 to 22 cm (0 to 9 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine subangular blocky structure; friable; many fine fibrous roots; neutral; clear smooth boundary.

A2 70L863 22 to 30 cm (9 to 12 inches). Brown (10YR 5/3) silt loam marginal to very fine sandy loam; weak fine platy structure; very friable; common fine fibrous roots; slightly acid; clear wavy boundary.

30 to 41 cm (12 to 16 inches). Brown (10YR 5/3) silt loam marginal to very fine sandy loam (A2); weak thin platy structure; very frishle; occupies about 75 percent of the horizon and completely surrounds or tongues into remnants of Bt; dark yellowish brown (10YR 4/4) silt loam (Bt); weak fine subangular blocky structure; frishle; common fine fibrous roots; very few thin clay films on faces of some peds in the Bt remnants and in some pores; medium acid; clear wavy boundary.

IIB6A 70L865 41 to 61 cm (16 to 24 inches). Dark yellowish brown (10YR 4/4) and dark brown (7.5YR 4/4) loam (Bt); weak medium subangular blocky structure; firm; occupies about 60 percent of the horizon and consists of upward extensions of the underlying Bt horizon; few thin clay films on faces of some peds and in tubular pores; tongues of brown (10YR 5/3) very fine sandy loam (A2) penetrate and completely surround Bt peds in the upper part; weak thin platy structure; very friable; few fine fibrous roots; approximately 1 percent by volume of fine rounded and subrounded pebbles derived from underlying micaceous rocks; strongly acid; clear wavy boundary.

IIB2t 701.866 61 to 97 cm (24 to 38 inches). Dark brown (7.5YR 4/4) loam; moderate medium and fine subangular blocky structure; friable; many thin dark brown (10YR 3/3) clay films in continuous tubular pores and on faces of peds; 2 to 5 percent by volume of subangular and angular pebbles derived from underlying micaceous rocks; strongly acid; gradual wavy boundary.

IIB3t 70L867 97 to 127 cm (38 to 50 inches). Dark brown (7.5YR 4/4) and strong brown (7.5YR 5/6) light loam; weak medium subangular blocky structure; friable; few thin dark brown (10YR 3/3) clay films on faces of peds and in pores throughout the upper and middle parts of the horizon but becoming thick and continuous on peds and in parts of the lower boundary; 10 to 15 percent by volume of angular and subangular pebbles derived from underlying micaceous rocks; strongly acid; clear wavy boundary.

70L868 127 to 177 cm (50 to 70 inches). Strong brown (7.5YR 5/6-5/8) and grayish brown (2.5Y 5/2) dominantly weakly indurated gmeissic rocks high in mica with narrow (1-2") seams of loamy residuum between rocks; the loamy residuum diminishes in quantity with depth; thin continuous clay films on rock fragments at the upper boundary; loamy residuum is strongly acid.

Additional notes: Temperature readings following several days of cold (40° to 50° F) weather:

15 cm 10.5° C 50 cm 11.8° C 100 cm 13.2° C

SOIL NO - - - - - 568#1-47+1

COUNTY - - - OCONTO

GENERAL METHODS- - - LA, 1818, 2A1, 28

SAMPLE NOS. 68L1087-68L1097

DEPTH	HORI	ZBN				EINE			SAND .			11	-SILT-	1	FAML	INTR	FINE	NON-	801
			2-	SILT .05-	CLAY	LLAT	2-	1-	ME U.S	.25-	-10-	-05	-02	.005	SAND	-2-	73	CD3-	15-
CM			05	002	.002	.0002	i .		. 25 PC1	.10 LT 21	.05	.02	.002	.002	21	.02	CLAY		CLA
00-10				42.9		2.4							18.4		38.0		37		
10-20	AZ		53.4	41.0	5.6		. 8	4.3	11.4	23.8	13.1	23.9	17.1		40.3	49.7		6	
20-36	B2H1			41.8		2.3			9.3	23.2	15.3	24.8	17.0		36.5	53.2	36	. 6	:
36-46 46-61	A 12 B 2			31.8 23.6	5.1 19.9	10.4	1.5	5.8 5.2	13.8	28.2 26.1	13.8	17.0	11.3		45.3	45.7 37.0	52	20	:
61-69	B'3		64.7	25.2	10-1	1004	2.4		12-7	29.6	14.6	14.6			50.1	45.4		10	
69-107	CI		65.4	26.0	8.0		3.8		12-9	29.1	13.5	15.0			51.9	44.3	33	8	
07-135	C2		65.7	25.8	8.5	2.8	3.8		13.5	28.4	12.5	14.5 15.9			53.2	41.9	33	8	:
135-160	63 C4		64.7 58.7	27.3	11.1		2.6 4.5		11.5	24.5	11.5	15.0	15.2			39.6		11	:
00-20		(A)	41.4	51.9	6.7		•5	1.9	5.7	17.3	16.0	33,1	18.8		25.4	59.7		7	-
EPTH	PARTI	CLE S	IZE ANA	LYSIS	. MM. 3	 38. 381	. 362) (BUI	K DENS		1.1		ER COV	TENT-		CARBO	NATE	(P)	H -
	VOL.	(WE	ICHT -			1 4410	4A1H	401	481C	481C	482	4C1 WRD		6E18	AIAE TJ	8Ç1A 1/1	8C 1/
	ĢT	G T 75	75-20	20-5	5-Z	LT	PC [BAR	OVEN DRY	COLE	BAR	BAR		CH/		5'	.032	H20	ČÁ.
CM	PCT	PCT)	LT20	G/CC	G/CC		PST	PCT	PCT	CM		PCT	PCT		
100-10 10-20	TR TR	0	0	TR TR	TR TR	56 53	TR	1.08		-028		35,3	5.8 3.1	.33				5.7 6.1	5. 5.
20-36	ŢŔ	ŏ	ŏ	TR	ŤŔ	56		1.49	1.52	-007	16.1		3.5	.19				6.7	5
36-46	2	0	0	1	1	42 .	2	1.64	1.65	-007 -002	. 11.8		1.9	-16			_	6.8	5
046-61	15	10	15	TR	TR	40 30	.3	1.59	1.68	.016		15.7		.11		TR 16	O TR	7.4 8.0	6
061-69 069-107	20 20	5	10 10	10	5 5	30	14 14	1.70B	1.90	.005	13.5		3.7 2.9	.16		19	' 6	8.3	7
07-135		5	10	iŏ	ś	30		1.76		.007	16.1		3.3	.17		16	ō	8.2	7.
135-160	6	ō	ō	8	2	39	10	1.708					3.3			20	0	8.3	
60-180		0	0	9	_6	40	15	1.91		.009			4-3	-18		24	0	8.4	7.
000-20	TR	0	0	ŦR	TR	68	TR	1.53	1.54	.002	22.2		4-2	.28					
EPTH (DRGANE	C MAT	TER)	IRON	PHOS	(EX	TRACT	ABLE B	ASES 56	44	ACTY 6HIA	AL 6G1D	CAT	EXCH) 5A6A	RATIO	RATIO 8D3	CA SF	I BASI SC3	
	ORGN		C/N	EXT	TOTL	6N2E Ca	MG	NA NA	K	SUÁ	BACL	KCL	EXTR	NHAC	NHAC		SAT	ÉXTB	VH
	CARB	4110		FE						EXTO	TEA	EXT	ACTY		TO	TO	NHAC	ACTV	
CM	PCT	PÇT		PCT		!											PCT	PCT	PCI
000-10 010-20	2.800	-1.7	7 16	0.5		9.1 4.5	2.0	0.1 TR		11.3	8.2 5.6		19.5	12.9	2.00	4.6 5.0	71 71	58 50	8
20-36		.04	0 15	0.7		5.0	0.5	TR	0.1	5.6	6.2		11.8	6.0	0.94	10.0	83	47	•
36-46		.01		0.6		2.5	0.3	TR	0.1	2.9	2 - 2		5.1	3.0	0.59	8.3	83	57	4
146-61	0.43	•03	0 14	1.3			2-40			10.6				9.9 4.5	0.50				
061-69	0.20			0.6		3.70 4.00	1.30		0.2	5.3 5.2				3.1					
069-107 107-135				0.5		3.00	1.20	0.1	0.1	4.4				3.6	3.42				
135-160				0.4		3.20	i.ob			4.3				3.2	3.43				
16C-180				0.4		6 • OD	1.00		0.1	7.2				3.6	0.32				
100-20	1.50																		
DEPTH					NA.	SALT	GYP	(SATUR	MOTTA	EXTRACT	BA1-)	ATTER	BERG
	BE1 REST	9C 18	8A H2Q	502 ESP	5E SAR	805 TOTL	6F 1 A	EC BALA	CV	2018	NA NA	K	611A CO3	HC UZ	2/14	S04	NO3	Laio	PLSI
	OH#-	rn			341	SOLU		MMHDS/								-		LMIT	IND
C M	· CM		PCT	PCT		PPM	PCT					- MEQ	/ LITE						
000-10																			
010-20 020-36																			
020-36 036-46																			
36-46 346-61																			
361-69																			
069-107	11000	8.1	26.1			50		0-29											
107-135																		•	
135+160 160-180																			
000-20																			
DENTIF	DITADI	 N OF	THE SP	001C H	OR I Z ON	BY LA	OR AT O	RY CRI	TER IA.	(E)									
DEPTH	HORI	201	6C54	HOSPHA 6G5A	TE.PHI	0) (CII B 6C2/	- D1	T) (PY	RDPHOSI Al Al	P) PY •C FE	+4L +	EC 1/2							
			EXT	₽XT	EXT	EXT	EXT	. 0		AV C	/ C	LAY							
			FE PCT	AL PCT	C PCT	FE PCT	AL PCT		Y SL	AY C	≁D •AL T	X H [C							
			r 6 1																
20-36	BIRH		-41	.23		.7		-10			1	38							

CLAY MINERALOGY (7A2C).

020-36 KKI MII VRI.

046-61 MI2 KKI VRI MTI CLI QZI FDI.

046-61 MI2 KKI VRI MTI CLI QZI FDI.

COMMENTS - BY INFERENCE, A CONSIDERABLE AMORPHOUS COMPONENT IS PRESENT. CLAY MINERALOGY IS MIXED.

PELATIVE AMOUNTS - (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE.

MIMERAL CODE - MT = MONTMORILLONITE MI = MICA KK = KADLINITE DL = CHLORITE VR = VERMICULITE QZ = QJARTZ

FD = FELUSPAR.

(A) SAMPLE COLLECTED FROM CORN FIELD NEAR 42-1.

(B) ESTIMATED.

(C) DRGANIC CARBON IS 7 KG PER SO M TO A DEPTH OF 1 METER (METHOD 6A1.

(D) METHODS 6NAC FOR CA AND 604C FOR MG.

(E) BELTSVILLE SOIL SURVEY INVESTIGATIONS UNIT, USDA-SCS, BELTSVILLE, MD.

Soil classification: Entric Clossoboralf; coarse-loamy, mixed. Soil: Emmet taxadjunct!

Soil No.: S68WI-42-1 4/.

Location: Oconto County. Wisconsin: SEx. SWr. Sec. 8. T. 27 N.. R. 19 E.: 140 feet north of road and 500 feet west

of east edge of woodlot.

Climate: Climate is continental. Mean annual temperature is about 43° F., mean annual precipitation ranges from

28 to 31 inches; and average froat-free season is 133 days.

Vegetation and land use: Native vegetation was mixed hardwood forest with sugar maple, beach, ash, aspen, and hemlock the principal species. A large part of this soil is cultivated with small grain, fruits, corn and forages being the main crops.

Parent material: Highly calcareous gravelly loam or sandy loam glacial till.

Physiography: Gently sloping to steep side slopes of drumlins and glacial till plains.

Topography: Undulating ground moraine. Site is on a 3 percent convex slope with a west aspect.

Drainage: Well and moderately well drained.

Ground water: Deep. Erosion: Slight.

Permeability: Moderate.
Described by: A. Klingelhoets, R. Fox, E. Link, Aug. 22, 1968.

(Colors are for moist soils unless otherwise stated)

01 1-1/2 to 0 cm (1/2 to 0 inches). Mat of hardwood leaves, twigs, and stems with some grasses.

Al 68L1087 0 to 10 cm (0 to 4 inches). Very dark gray (10YR 3/1) fine sandy loam; moderate medium crumb structure; friable; many of the sand grains have been stripped of color; many roots; neutral; clear wavy boundary.

A2 68L1088 10 to 20 cm (4 to 8 inches). Grayish brown and dark grayish brown (10YR 5/2 and 4/2) fine sandy loam; weak coarse plates parting to weak fine subangular blocks; friable; much earthworm activity and mixing of Al in holes and casts; roots common; slightly acid; clear wavy boundary.

B2hir 68L1089 20 to 36 cm (8 to 14 inches). Dark brown (7.5YR 4/4) fine sandy loam; weak fine and medium subangular blocky structure; friable; roots common; medium acid; abrupt irregular boundary.

A'2 68L1090 36 to 46 cm (14 to 18 inches). Brown (7.5YR 5/4) light sandy loam; moderate coarse platy structure; slightly hard and brittle when dry (weak fragipan); friable when moist; highly vesicular; few roots going down vertical structural breaks; slightly acid; abrupt irregular boundary.

B'2t 68L1091 46 to 61 cm (18 to 24 inches). Reddish brown (5YR 4/4) sandy clay loam; moderate medium subangular blocky structure; firm when moist; thin patchy clay films with dark reddish gray (5YR 4/2) color; 8 percent of volume is comprised of stones 3/4 to 3 inches in diameter and 5 percent of stones over 3 inches in diameter; roots neutral; clear wavy boundary. (5 to 9 inches thick.)

B'3 681.1092 61 to 69 cm (24 to 27 inches). Reddish brown (5YR 4/4) loam with spots and streaks of (5YR 5/4) especially in lower part of the horizon; weak medium subangular blocky structure; friable when moist; 8 percent of

<u>투</u>	volume composed of stones 3/4 to 3 inches in diameter and 5 percent of stones larger than 3 inches in diameter; roots common; slight effervescence; gradual wavv boundary.
	hand the same of t
	A
♥ <u>₹ 32°</u> , 2°, , <u></u>	
î, î i be	

SOIL NO - - - - - S68W1-42-2

COUNTY - - - DEDNTO

GENERAL METHODS- - -1A,1818,2A1,28

SAMPLE NOS. 68L1098-68L1107

DEPTH	HORI	ZON	(, F	ARTIC	E SIZE	ANALY	\$15, 1	T 2NH,	3A1,	341A.	3A18			1	RATI
			SAND	SILT	C) AU	FINE	WCOE		SAND -))(SILT-	1	FAML				801
			2-	.05-	LT	LT	2-	l-	MEDS			-05	.02		- SAND	. 1 I	CLAY TJ	CO3-	15-
			.05			.0002		.5	.25		.05	.02		.002			CLAY	CLAY	BAR TO
CM		_	(- PCT	LT 2M	4				-)	PCT	PCT	CLAY
000-5	Al		59.9		5.8		.3	3.8	11.1	31.7	13.0	16.7				47.9		6	
005-13	A2			31.0	3.9		- 4	3.9	11.5	32.6		14.8				50.4		4	.6
013-30	BHI		66.9	26.8	6.3		1.5	5.2	13.3		15.9		15.1		51.0			6	. 41
030-41	A 12		63.9	30-2	5.9		1.3	5.3	13.9		13.8		15-0			44.7		6	. 3
041-58 058-81	B' 2' B' 3'		54-1		21.0		1.5	4.9 5.0	11.7 11.0		11.1	12.1	12.8			35.4 40.0		21	
081-99	ะเว็		70.1		3.8		2.1	3.9	8.4		12.8					48.1		16	.34
099-130			95.3	2.4	2.3		- 8	ī.i	6.5		2.8	2.1	.3			28.4		í	.30
130-155	3C3				12.5		3. Ĭ	5.8	9.0		10.5	16.0				37.3		10	.38
000-18		(A)														3		•-	• • • •
DEPTH			IZE ANA			 LR. 381			K DENSI	I tv) (e co	NTCNT-				·	
22													482	4C1			3414		
	GT	GT	75-20			LT		1/3-	OVEN (1/10	1/3-		WRD		LT	LT	1/1	1/2
	2	75				.074		BAR	DRY		BAR	BAR	BAR	CM/		Ž	.032	H2O	CACL
CM	PCT		(-	PCT L	.† 75 -)	LT20	G/CC	e/cc		PCT	PC T	PCT	CM		PCT	PCT		
006-5	0	o	0	0	0	46	0	1.108										6.4	6.0
000-13	i	0	0	1	i	42	2	1.30B					2.4					6.5	5.7
013-30	10	5	10	TR	TR	35	2	1.45	1.46	.002	14.0		2.5	.15				6.7	5.9
030-41	10	5	10	TR	TR	40		1.52	1.53	-002	11.2		1.9	-13				6.7	5.8
041-58	10	5	10	TR	TR	45		1.50	1.60	.020		20.3	7. 8	.17		TR	0	7.3	6.5
058-81	10	5	10	5	TR	45		1.45	1.58	.026		19.2	6.4	.17		. 5	1	7.6	6.9
081-99	15	5	5	. 5	5	30		1.91	1.94	.005	12.8		1.3	- 19		28	1	8.4	7.
099-130	20	0	5	17 10	4 5	4 45	21			007						. 6	1 3	8.3	7.1
130-155 000-20	TR.	5 0	ō	TR	TR	TR		2.05 1.31	2.10 1.42	.007 .028	11.5	25.9	4.7 5.2	.11 .28		29	•	8.3	7.6
DEPTH (TER)	LRON					SES 584			AL		EXCH)			CA SF		SATI
	6AlA Orgn	NITG		EXT	651A TOTL	6N2E Ca	MG	NA NA	6UZA K		6H1A BACL	6G1D KCL	EXTE	5A6A NHAC	BD1 NHAC	BD3 CA	SAT	5G3 Extb	5C1 NHAC
	CARB	MIIG		FE	1016	CA		78	Α.		TEA	EXT	ACTY	MNAC	TO	TO	NHAC	ACTY	MILLER
CM	PCT	PCT		PCT	PCT (ME0)		MG	PCT	PCT	PCT
006-5														-	5.80		80	80	
	2.80C 1.27			0.5			10.2	TR TR	0-4 0-1	37.5 6.2	Z.9		46.9 9.1	33.7 5.9	1.50	2.2	71	68	111
	0.60			0.7		3.6	0.9	TR		4.6	2.8		7.4	4.6	0.73	4.0	78	62	100
	0.27			0.7		2.5	0.5	TR	0.1	3.1	1.9		5.0	3.2		5.0	78	62	91
	0.42			1.5			2.10	0.1	0.2		•••			10.6			• -		
058-81	0.48			1.3		7.8D	2.3D	0.1	0.2	10.4				9.5	0.56				
081-99	0.12			0.4		3.5D	0.50	ŦR	0.1	4-1				1.9					
099-130				0.4			0.50	TR	0.1	2.2					0.61				
130-155				0.6		9-00	1.30	0.1	0.1	7.5				4.1	0.33				
~000 - 20	2.02																		
IDENTIFE	CATIO	N OF	THE SPOI	DIC HO	RIZON	BY LAB	ORATOR	Y CRIT	ERIA. (l E)									
DEPTH	HORI	ZON :	(PYROPHI	DSPHAT	E, PH10	113) (c													
			6C54	6G5A		6C2A			L AL+C		L -1								
			EXT	EXT	EXT	EXT	EXT	,			CL								
•			FE	AL	C	FE	AL	CLAY	CLAY										
			FE PCT	AL PCT	C PCT	FE PCT	AL PCT	CLAY	CLAY	FE+A									

⁽A) COLLECTED 90 M SOUTH OF 42-2 FROM A FIELD OF TIMOTHY.
(B) ESTIMATED.
(C) ORGANIC CARBON IS 7 KG PER SQ M TO A DEPTH OF 1 METER (METHOD 6A).
(D) METHODS 6M4C FOR CA AND 604C FOR MG.
(E) BELTSVILLE SOIL SURVEY INVESTIGATIONS UNIT, USDA-SCS, BELTSVILLE, MD.

Soil classification: Typic Eutroboralf; fine-loamy, mixed.

Soil: Emmet taxadjunct* .

Soil No.: 868WI-42-2.

Location: Oconto County, Wisconsin; SEk, SWk, Sec. 20, T. 27 N., R. 20 E.; 120 feet north of road and 12 feet west

of line fence.

Climate: Climate is continental. Mean annual temperature is about 43° F; mean annual precipitation ranges from

28 to 31 inches; and average frost-free season is 133 days.

Vegetation and land use: Native vegetation was mixed hardwood forest with sugar maple, beech, ash, aspen, and hemlock the principal species. A large part of this soil is cultivated with small grains, fruits, corn, and forages being the main crops.

Parent material: Highly calcareous gravelly loam to sandy loam glacial till.

Physiography: Gently sloping to steep side slopes of drumlins and glacial till plains.

Topography: Undulating ground moraine. Site is on a 3 percent convex slope with a west aspect.

Drainage: Well and moderately well drained.

Ground water: Deep. Erosion: Slight. Permeability: Moderate

Permeability: Moderate.

Described by: A. Klingelhoets, R. Fox, E. Link, Aug. 22, 1968.

(Colors are for moist soils unless otherwise noted)

01 1-1/2 to 0 cm (1/2 to 0 inch). Mat of partially decomposed hardwood leaves, twigs, and stems with some grasses.

Al 68L1098 0 to 5 cm (0 to 2 inches). Very dark gray (10YR 3/1) fine sandy loam; moderate fine crumb structure; friable; many of the sand grains have been stripped of their color coatings; many roots; neutral; abrupt wavy boundary.

A2 68L1099 5 to 13 cm (2 to 5 inches). Grayish brown (10YR 5/2) fine sandy loam; weak medium platy structure; friable; roots common; slightly acid; clear wavy boundary.

Bhir 68L1100 13 to 30 cm (5 to 12 inches). Dark brown (7.5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; 5 percent of volume made up of stones 3/4 to 3 inches in diameter and 3 percent larger stones; roots common; slightly acid; gradual wavy boundary.

A'2 68L1101 30 to 41 cm (12 to 16 inches). Brown (7.5YR 5/2) sandy loam; moderate coarse platy structure; slightly hard and brittle when dry (weak fragipan); friable when moist; vesicular; 5 percent of volume comprised of stones 3/4 to 3 inches in diameter and 3 percent larger stones; roots common to few; slightly acid; abrupt wavy boundary. 3' 2r , 681 1102 At to 59 cm (16 to 22 trobes) 4 5 11

LINCOLN. MEBRASKA GENERAL METHODS- - - 14, 1818, 241, 28 SAMPLE NOS. 721850-721859 HCRIZON - I(A. - - - -_.002 : 10 .05 -002 -002 .0002 _ • 5 .25 - PCT .10 LT 2MM . 05 . 02 -002 - 02 CH PCT PCT CLAY 000-2 40.4 52.9 52.7 40.9 27.0 27.6 2.4 5.6 5.3 16.2 24.6 32.0 6.9 1.6 .8 15.8 25.7 13.3 51.3 63.6 - 67 BZIRIF 46.2 57.2 52.3 63.1 73.4 4.9 9.3 9.0 11.9 20.3 8.0 13.9 4.2 014-36 B22IR 48,9 29.8 37.9 36.3 64.5 67.4 70.4 2.0 .7 4.5 1.2 21.7 23.4 16.4 19.3 27.2 10.1 . 84 . 57 .5 1.7 2.2 3.3 6.4 7.7 6.9 036-54 054-65 065-75 1'2 168' 33.5 18 24.0 18.9 8.6 6.7 TR .1 TR .1 . 2 .6 . 61 41.3 39.0 38.7 BSA ' 25.0 .5 21.8 34.4 35.6 1.2 6.1 2.0 63.6 28 . 49 075-119 119-149 149-179 179-210 16.0 17.7 17.0 48.2 B'21T .6 10.6 40 . 48 8.0 9.5 74.3 73.5 .6 44 . 49 B'3T 41.3 8.3 32.2 50.0 41 1.2 . 51 BULK DENSITY) (- - -- -) 8C 1E 1/2 DEPTH -WATER CONTEST-- - -) CARBONATE (~ -PH 8C1A 481C 4B2 15-4C1 GT. 621B 3A1A OABM COTE 1/10 1/3-LT 2 LT 074 BAR CH/ 75 PCT LT20 RAD ħ₽Ψ BAR BAR .002 H20 CACL CH PCT PCT PCT LT 75 G/CC G/CC PCT PCT 71 1.0 A 5.3 4.7 000-2 TR 0 TR 4.6 5.8 TR TR 002-14 014-36 TR TR 62 67 TR TR .011 5.3 TR TR 1.26 1.30 33.4 1.35 1.4 a 1.54 TR Ô 1.36 .003 25.1 18.3 4.1 . 20 4.1B 4.6 TR 5.1 79 90 97 TR .009 25. 1 24. 2 21.1 054-65 TR 0 TR 1.58 5.5 . 25 3.5B 5.1 4.3 065-75 075-119 119-149 149-179 1.54 1.50 1.53 1.5 1 1.58 1.58 . 23 . 28 TR 0 TR 5.8 2.3B 5.0 4.2 7.6 8.7 8.6 8.5 TR TR .011 25.4 7.6B TR TR ٥ TR O TR 0 98 98 TR 5.0 4.3 4.5 1.52 .014 28,1 3.1B 29. 2 . 28 TR 179-210 1.5 A DEPTH (ORGANIC MATTER) (CAT EXCH) 5A3A 5A6A EXTE NHAC IRON 6C2B (- -EXTRACTABLE BASES 5841- -) 682E 602D 6P2B 6Q2B AL 6G1E (BASE SAT) 5C3 5C1 PHOS ACTY RATIO RATIO CA 5#1 6H11 8D1 8D3 BXT TOTL FA ĸ SUN KCL HEAC SAT BXTB MHAC CA BACL EXTS / 100 ACTY ACTY PCT CARB FB TEA BXT TO TO NHAC G-CH PCT PCT PCT PCT (--HEQ CL AY ₩Ģ PCT PC T 000-2 .097 6.6 3.5 7.3 5.2 12.5 14.7 12.9 10.6 11.1 11.6 14.2 15.9 9.0 1. 30 13.0 73 81 1,220 13 TR 58 .8 4.0 2.7 3.6 002-14 .077 TR 9.0 1.45 8.8 27 44 35 . 87 10.2 7.0 7.3 7.1 7.9 7.5 6.9 12 2.3 2.7 2.7 3.1 7.7 1.57 014-36 .67 .056 1.2 TR TR .1 .2 .2 .2 .2 .3 .3 .8 1.2 1.6 1.5 .9 30 21 036-54 .018 .82 36 . 16 1.4 054-65 065-75 075-119 36 34 3.8 7.5 3.4 51 50 .020 .8 . 83 34 39 1.1 1.7 2.3 2.6 .76 .11 1.2 4.3 5.7 6.5 10.8 12.2 12.8 .68 .69 2.5 2.5 2.5 6.3 40 44 53 58 69 119-149 149-179 1.4 .1 8.4 9.5 . 09 .08 85 (SATURATED PASTE) NA 5D2 NA 5e SALT BD5 GTP - - - -) ATTERBERG 471 472 8R1 8C1B 671A 81 LQID PLST REST PB **B20** BSP SAR TOTL BC CA ИG MA C03 HCO3 CL 504 ио3 OH H-SOLU HHBOS/ TRIL IRDI (- - - - - - - - HEQ / LITER - - - - - - - -CH CM CH 000-2

Soil classification: Typic Glossoboralf; coarse-silty, mixed

Soil: Fence taxadjunct*.

Soil No. S72WI-21-6 (LSL Nos. 72L850-72L859).

Location: Forest County, Wisconsin; SWk, NEk, Sec. 8, T. 34 N., R. 14 E.; near county road W and Switzer Point Road.

Climate: Humid continental; mean annual temperature is about 41° F; mean annual precipitation is 30 inches; and

frost-free season is about 130 days.

Vegetation and land use: Native vegetation was northern hardwoods. Cutover areas are in sapen. Small areas have been cleared and are used for general farming. Some wooded areas are used for livestock pasture.

Parent material: Silt and sand lacustrine deposits in old glacial lake plains.

Physiography: Nearly level to sloping glacial lake plains.

Topography: Site is on a 1 percent plane slope.

Drainage: Moderately well and well drained.

Ground water: Deep.

Erosion: Slight.

Permeability: Moderate.

Described by: Steve Payne and Robert Fox.

Sampled by: Robert H. Jordan and Robert L. Juve, September 19, 1972

(Colors are for moist soils unless stated otherwise)

01 4 to 0 cm (1-1/2 to 0 inches). Dark reddish brown (5YR 2/2) organic matter; weak fine granular structure; many roots; a few sand grains; abrupt boundary.

A2 72L850 0 to 2 cm (0 to 3/4 inch). Brown (7.5YR 4/2) very fine sandy loam; weak medium platy structure; very friable; many roots; medium acid; abrupt boundary.

B21hir 72L851 2 to 14 cm (3/4 to 5-1/2 inches). Mixture of brown (7.5YR 4/2 and 4/4) very fine sandy loam; weak medium subangular blocky parting to fine granular structure; very friable; many roots; clear boundary.

B221r 72L852 14 to 36 cm (5-1/2 to 14 inches). Brown (7.5YR 4/4) very fine sandy loam; weak fine subangular blocky structure; very friable; many roots; strongly acid; clear boundary.

A'2 72L853 36 to 54 cm (14 to 21 inches). Brown (7.5YR 5/4 and 4/4) very fine sandy loam; weak medium platy structure parting to very weak very fine subangular blocky structure; very friable; silt coatings on faces of peds; vesicular; few roots; strongly acid; abrupt boundary.

A&B' 72L854 54 to 65 cm (21 to 26 inches). Brown (7.5YR 5/4) silt loam with a few fine prominent mottles of yellowish red (5YR 5/8) and faint mottles of reddish brown (5YR 4/4); weak fine platy and subangular blocky structure; friable; vesicular; few roots; strongly acid; abrupt boundary.

B&A' 721855 65 to 75 cm (26 to 30 inches). Reddish brown (5YR 5/4) and brown (10YR 5/3) silt loam with a few medium prominent mottles of yellowish red (5YR 4/8); weak medium subangular blocky structure; friable; few lenses of fine sand at the boundary of the A&B' and B&A' horizons; vesicular; few patchy clay films on Bt peds; few roots; strongly acid; clear boundary.

B'21t 72L856 75 to 119 cm (30 to 47 inches). Brown (7.5YR 4/4) silt loam with a few fine faint mottles of reddish brown (5YR 4/4) and specks of dark reddish brown (5YR 3/3); moderate medium subangular blocky structure with a macrostructure of coarse weak prismatic; firm; many thick patchy clay films; few roots; few iron concretions; very strongly acid, gradual boundary.

B'22t 72L857 119 to 149 cm (47 to 59 inches). Reddish brown (5YR 5/3) silt loam with common medium prominent mottles of yellowish red (5YR 4/6 and 5/6); weak medium subangular blocky structure; firm; thick patchy clay films common; strongly acid; clear boundary.

B'3t 721.858 149 to 179 cm (59 to 71 inches). Brown (7.5YR 5/4) silt loam with common medium distinct mottles of yellowish red (5YR 4/6) and a few dark specks and streaks of dark reddish brown (5YR 3/3 and 3/2); weak medium subangular blocky structure; firm; few discontinuous clay films; strongly acid; clear boundary.

C 72L859 179 to 210 cm (71 to 84 inches). Brown (7.5YR 5/4) silt and very fine sand with few medium distinct mottles of yellowish red(5YR 5/6); weak medium subangular blocky structure; friable; few small manganese concretions; strongly scid.

Remarks: These are moderately well and well drained soils and at the sampling site are nearly level. A sample of the B^{\dagger} 21t horizon of this soil was sent to the University of Wisconsin for examination of thin section.

^{*}This pedon lacks a spodic horizon; therefore, it is a taxadjunct to the Fence series.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S70WIS-37-4 COUNTY - - - MARATHON

GENERAL METHODS- - -1A, 1818, 2A1, 28

SAMPLE NOS. 701894-701900

	,,,,,,,,,				-,						,								
DEPTH	HORE	ZON	(PARTIC	LE \$121										
			CAMD	efit	CLAY	CLAY											FINE		
			2-			LT	2-	1-	.5-		.10-				- SAND		to	CLAY	
				.002	-002	.000	2 1	. 5	.25	.10	.05	-02	-002	+002	21	.02	CLAY		to
CM			(-	- - -					T LT 21							1 PCT	PÇT	
00-21	AP		22.9			:	3.0	4.4	3.7	5.8	6.0	31.7	34.2		16.9	40.6			.6
21-30	A2		47.0						7.8	11.4	9.9		22.7			37.8			- 54
30-45	AEB			40.6				11.4					20.6			35.5			- 4
145-62 162-79	8&A 821			39.6			3.8			10.9			20.6			34.4			.3
79-110				35.8 37.4		11.6		11.8		10.6			19.5 20.9			29.7 31.4			• 3
00-21		(A)	4303	,,,,	.,.,		•••		•••		/••	****			,,,,	2247	٠.		• • •
EPTH (ONATE		
												481C		4C1			BALA		
	GT	GT				LŤ	20-2	1/3-			1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
	2	75					PCT		DRY		BAR	BAR	BAR	CM/		2		H20	CAÇ
CM	PCT	PCT	(- PÉT	LT 75		LT20	G/CC			PC T	PCT	PCT	CM			PCT		
000-21	5	0	TR	2	4	77			1.36			28.3	7.3					5.2	5.
21-30	. 5	0	TR	4 5		54 50			1.63			16.1	4.5 5.6			C C		5.7 5.3	
30-45 45-62	10	٥	10	TR.	TR	35		1.508	1.61	.021	10.7	10+0	7.4	*19	7.0			4.4	3.
62-79	15	ŏ	15	5	TR	50			1.64	.014	21.6	19.4	7.3	.16	3.10	С		4.4	3.
79-110		ŏ	30	TŘ	TR	10		1.708					8.1			=		4.1	3.
00-21	3	Q	0	2	3		5						7.3					5.3	5.
EPTH (EXCHI			ÇA		SAT
	GALA	681 A	C/N	6C2B					6928					5A6A		8D3	5Fl		5C I
	ORGN	NITS		EXT	TOTL	. CA	MG	NA	K	SUM				NHAC			SAT	EXTB	NHA
	CARB	DeT		FE PCT	DCT	(MC/		TEA	EXT	ACTY		TO	TO	NHAC PC T	ACTY PCT	PCT
CM	PÇ T	PCT																	
000-21				1.2		9.3				11.3		0.1		15.7				53	7.
21-30		.03		1.4		4.7				5.9			11.4		1.10			52 49	6
30-45		-02		1.6		4.9				5.4 5.9		0.4		10.6 12.7				35	44
)45-62)62 - 79		-01	0	1.9		3.3				4.9		2.2						32	4
)79-110				2.0		4.0					12.7	2.4		14.6		2.5	27	32	41
00-21		.21	6 11																
DEPTH (PASTE		NA NA	SALT	GYP	(SATURA	ATION !	EXTRAC	T 6A1-			1	ATTER	ERG
	8E1		84	5D2	56	805	6F1A										6MLA		
	REST	PH	HZG	ESP	S AR	TOTL		EC		MG	NA	K	C03	HCD3	CL	204	ND3	LMIT	
CM	CH-		PCT	PCT		SOLU PPM	PCT	MMHDS/ CM	(PCT	
00-21																			
)00-21																			
130-45																			
145-62																	_		
062-79																			
79-110	5200	4.2	-∕28.7	1		80		0.54	2.4	1.1	0.6	0.1							
00-21																			

⁽A) COMPOSITE OF SEVERAL SURFACE SAMPLES.

(B) ESTIMATED.

(C) MICRO-PENETRATION RESISTANCE - A ROD D.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10- BAR.

A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UMITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

(D) ORGANIC CARBON IS 9 KG/M SQ TO A DEPTH OF 1 M 16A).

Soil classification: Typic Glossoboralfs; fine-loamy, mixed.

Soil: Fenwood.

Soil No.: S70WI-37-4 .

Location: Marathon County, Wisconsin; NE%, SE%, Sec. 28, T. 29 N., R. 6 E.; 125 feet west of town road and 300 feet

south of barn.

Climate: Humid-continental; mean annual temperature is about 43° F; mean annual precipitation is about 30 inches;

and frost-free season is about 133 days.

Vegetation and land use: Natural vegetation was mixed hardwood forest. Much of this soil has been cleared and is used for general farming and pasture.

Parent material: Thin silty sediments over residuum from fine-grained granite and greenstone rocks.

Physiography: Gently sloping to moderately steep rock-controlled upland.

Topography: Site is on a southeast 3 percent plane slope in a cultivated field.

Drainage: Well drained. Ground water: Deep Erosion: Slight. Permeability: Moderate. Described by Paul H. Carroll

(Colors are for moist soils unless otherwise stated)

Ap 701.894 0 to 21 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine and very fine subangular blocky structure; friable; many fine roots; very few (less than 1 percent) greenstone and fine-grained granitic fragments 2 to 75 mm in diameter; medium acid; sbrupt smooth boundary.

A2 701895 21 to 30 cm (8 to 12 inches). Grayish brown (10YR 5/2) and brown (10YR 5/3) very fine sandy losm; weak thin platy structure parting to weak fine subangular blocky structure; friable; common fine fibrous roots; 3 percent by volume of greenstone and fine-grained granite fragments 2 to 75 mm in diameter; medium acid; clear wayy boundary.

A&B 701896 30 to 45 cm (12 to 18 inches). Brown (10YR 5/3) light loam (A2); weak thin platy structure; friable; occupies about 60 percent of the horizon and completely surrounds or intermingles with remmants of the Bt; dark yellowish brown (10YR 4/4) loam (B2t); weak fine subangular blocky structure; friable; common fine fibrous roots; few thin clay films on faces of peds and in pores; 5 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (7 percent 2 to 75 mm); strongly acid; clear wavy boundary.

<u>B&A 70L897 45 to 62 cm (18 to 24 inches)</u>. Dark brown (7.5YR 4/4) loam (Bt); moderate medium subangular blocky structure; firm; occupies about 70 percent of the horizon and consists of upward extensions of the underlying Bt horizons; many thin clay films on faces of peds and in tubular pores; tongues of brown (10YR 5/3-5/4) loam (A2); weak thin platy structure; friable; 5 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (7 percent 2 to 75 mm); very strongly acid; clear wavy boundary.

B21t 701898 62 to 79 cm (24 to 31 inches). Dark brown (7.5YR 4/4) loam; moderate medium angular and subangular blocky structure; very firm; few fine fibrous roots; many thin clay films on faces of peds and in tubular pores; 10 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (14 percent 2 to 75 mm); very strongly acid; clear wavy boundary.

B22t 701899 79 to 110 cm (31 to 43 inches). Dark brown (7.5YR 4/4) gravelly loam; moderate medium angular blocky structure; very firm; continuous thin clay films on faces of most peds and in tubular pores; 20 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in dismeter (30 percent 2 to 75 mm); grades below 43 inches (110 cm) to a concentration of angular and subangular rock fragments that makes further penetration unfeasible; strongly acid.

D		_	M.E.	.∕100 Ga	ems Soi	1		_ ـ ا		ا ر ا			Si	ze Cla	15809 9	6		
Depth cm	Horizon	Ca	Mg	K	Ne	H	s +	% B. Sat	рH	o.c.	Clay	117	USDA Silt	VFS	FS	MS	cs	VCS
3.5-0	Oa.		1					-	4.8	-	1					1	-	
0-8	A21]	2.9	1.4	0.2	<0.1	8.6	13.1	34	4.4	1.96	7.9	19.9	40.9	11.1	19.6	10.8	7.2	2,5
8-13	A22	3.9	1.4	0.2	<0.1	10.1	15.6	35	5.1	1.61	8.6	19.0	40.2	11.3	19.5	11.2	7.1	2.1
13-23	B21hir	3.6	1.4	0.2	<0.1	14.1	19.3	27	5.3	1.56	8.8	17.8	37.4	10.6	20.4	11.6	7.9	3.3
23-35	B22ir	2.0	1.4	0.2	<0.1	9.9	13.5	27	5.6	0.86	6.9	14.6	32.8	13.0	23.6	12.3	8.4	3.0
35-42	B23irx	1.5	1.3	0.1	<0.1	7.3	10.2	28	5.7	0.53	6.4	12.7	29.2	14.2	25.2	13.1	8.6	3.3
42-60	A12x	1.1	1.0	0.1	<0.1	4.0	6.2	35	5.8	0.20	4.0	11.8	26.6	14.3	26.9	14.3	10.0	4.0
60-100	B'2tx	1.7	1.3	0.1	<0.1	2.7	5.8	53	5.4	0.10	5.6	12.2	28.1	14.8	26.5	13.4	8.4	3.2
100-130	C1	1.6	1.4	<0.1	<0,1	2.0	5.0	60	5.3	0.04	4.0	8.1	19.2	11.6	29.2	21.2	11.6	3.2

¹ Acidity 2 CEC by sum of cations 3 International III - This is PSDA fine silt (.02-.002 mm).

Soil classification: Typic Fragiorthods; coarse-loamy, mixed, frigid.

Soil: Gogebic taxadjunct*. SoilNo: S49WI-4-3.

Location: Bayfield County, Wisconsin; SW4 of Sec. 11, T. 44 N., R. 6 W.; 50 feet east of county highway D across

the road from watershed elevation divide marker. Climate: Average annual precipitation is 28 to 30 inches. Mean annual air termperature is about 37° to 43° F. Mean summer temperature is 60° to 67° F. Frost-free season is 90 to 105 days.

Vegetation and land use: Most of the soil has a mixed hardwood with scattered conifer forest cover. Hard maple, oak, birch, basswood, hemlock, white pine, and aspen are the principal tree species. Small areas have been cleared and are used for general farming.

Parent material: Fine sandy loam acid glacial till.

Physiography: Gently sloping to hilly upland.

Topography: Near the crest of a large ridge on a 3 to 4 percent slope.

Drainage: Moderately well to well drained.

Ground water: Deep. Erosion: Slight,

Permeability: Moderate in upper part, moderately slow in the fragipan.

(Colors are for moist soil unless otherwise stated)

01 Thin layer of maple, oak, and aspen leaves mixed with twigs and acorns.

Os 491011 3.5 to 0 cm (1-1/2 to 0 inches). Black (10YR 2/1) organic mat, very dark grayish brown to very dark brown (10YR 3/2 to 2/2) dry; partially decomposed mat of organic matter bound together with many fine fine fibrous roots; many fragments of wood and charcoal; very strongly acid.

O to 8 cm (0 to 3 inches). Reddish gray (5YR 5/2) losm, pinkish gray (5YR 6/2) dry; dark reddish gray (5YR 4/2) wet; coarse platy structure; friable; many fine fibrous roots; few pebbles; very strongly acid.

A22 491013 8 to 13 cm (3 to 5 inches). Dark reddish gray (5YR 4/2) loam, light reddish brown (5YR 6/3) dry, dark reddish brown (5YR 3/3) wet; weak fine subangular blocky structure parting to weak fine granular structure; friable; few pebbles; many roots; some humus accumulation; strongly acid.

12 hould no (E be diduction). Down moddish house (EVR 2/1) file and the transfer to the transfer of the control of the control

.9

006-20 020-35 035-57 B21HIB B22IR B23IRX .8

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC BATIORAL SOIL SURVEY LABORATORY LINCOLM, MEDRASKA

SOIL NO - - - - - 572WI-63-1

COUNTY - - - VILLE

			~,						_										
gbner al	nethol	os	-1A,11	1B, 2A	1,2B			SA MP	Le nos	. 7218	86-7 2L	893							
DEPTH											+			334		*			
VEFIL	HORIZ	401	'			FINE CLAY		FARTIC	GTAU PD DID	E THUT	1919,	LT 288	, 3&1, _ett=_	3818,	SIAC	THER)	BAT
			SAND	ST1.77	CT. 3.V	CLAY	ALUS.	CADE	AENC	PNPC	VPMC	COST	DEGT.	WPCT	GIRU 1	44.	C4 74	408-	16
			2-	05-	7.4	7.4	700	1-	5-	25-	10-	US	1031	0.05	- 2-	2-	40	CLAY	13 13
			. 05	-002	.002	.0002	, î	. 5	25	.10	.05	.02	.002	- 003	- 10	.02	CLAY	CLAI	70
CH			(PÇ	T LT 2	K#) PCT	PCT	CLA
									42.0		*****								
100~6 100~6	AZ	77 B	50.5	38.2	5.3	1.4	1./	0.3	13.8	22.5	12.2	10.1	22.1		44.3	38.7	26		٠.
100-20 120-26	BZ 18	ITE	60.2	32.9	6.9	. 5	2.1	3.6	10.1	24.5	17.9	46 0	15.0		40.3	40.4			7-
20-33	D 2 2 2 1	L AL	64.7	31.0	6.3	• •	3.1	71.3	15.0	20.0	10.0	15.7	13.1		50.3	40.0	14		•
/57-57	1179	7	67.8	78.3	3.0		3.0	8.1	16-0	25.9	14.8	15.7	12.6		53.0	42.9	23		•
83-98	A A R		65.8	30.0	4.2		3.5	8.0	14.7	24.9	18.7	17.1	12.9		51.1	43.8	10		-
98-127	B21	t	66.2	28.9	4.9	. 9	3.1	7.9	15.3	26.0	13.9	15.7	13.2		52.3	42.3	18		
00-6 06-20 20-35 35-57 57-83 63-98 98-127 127-162	B221	t	52.3	34.5	13.2	4.4	2.1	5.8	11.5	20.2	12.7	18.1	16.4		39.6	40.7	33		•
BPTH	(PARTIC	LE S	IZE ANA	LYSIS	, MM ,	3B, 3B1	1, 3B2	(80)	LK DRE	SITT	(+	RAT	BR COI	TBMT-		CARB	OWATE	(PE	90
	VUL. (75-20	20-5	5-7	T - T	20-2	1/3-	OVE	COLR	1/10	1/3-	15-	#RD		1.4	1.4	1/1	1/2
	3	75	73-20	20-5	3-6	. 074	PCT	BAR	DRY	CODE	RAR	BAR	BAR	CB/		2	.002	H20	CA
CH	PCT	PCT	1	PCT 1	T 75	1	1.720	6/CC	G/CC		PCT	PCT	PCT	CIS.		PCT	PCT		-
~a ~																			
0.0-6	5	ሞው	5	2	2	46	4						3.9	•				4.1	3.
06-20 020-35 035-57	Ś.	TR	Š	8	6	41	15	.81	.93	.045	48.0	41.2	12.4	. 21	.9.	A		4.6	4
20-35	10	TR	5	6	7	37	14						5.7					4.7	4
35-57	10	TR	5	8	6	35	15						4.1					4.8	
1 57 –83	20	5	- 10	9	6	30	17						2.2					4.9	4.
89-58	20	5	10	7	5	33	13						1.6					5.1	
98-127 27-162	20	5	10	7	5	33	13						1.9			_			•
27-162	15	5	10	5	5	44	11	1.88	1.88	.000	13.8	11.5	4.9	. 11	4.3	1		5.8	5
																	CA		
BPTB (6111	E 513	C /4	あぐつね.		K NO T	ベハフ カ	KD2R	6028		6R11	661R	5131	5161	8 D 1	8D3	5P1	5C3	5c
	CARR	PIIG		PA.	1012	-4			••	BITE	TEA	EXT	ACTY		70	10	MHAC	ACTY	
CE	PCT	PCT		PCT	PCT	(HE	Q / 10) G-				CLAY	# G	PCT	PCT	PC1
000-6 006-20 020-35 035-57 057-83 083-98 098-127																			
00-6	1.65			1.0		1.0	.3	.1	.1	1.5	8.2	1.9	9.7	8.4	1, 58	3,3	. 12	15	
06-20	3.80			1.8		. 4	1	TR	. 1	,6	36.5	5.1	37.1	22.7	3. 29	4.0	2	2	
020-35	1.10			1.0		.3	1	TR	TR	.4	15.9	2.4	16.3	9.5	1.51	3.0	3	Z	
335-57	.79			1.0		.3	•1	TE	-1	.5	13.7	1,8	12.2	/.1	7.44	3.0	- 7	*	
57-83	. 27			1.0		2	-1	TR	TR	3	6.9	1.0	/ · Z	3.6	.91	2.0	34	**	
98-98	.05			9		7.3	.0	• 1	TH	2.0	2.0	• • • • • • • • • • • • • • • • • • • •	4-0	3.0	. 90	2.4	2 3 4 5 34	58	:
98-127	. 18			1.0		7.9	9	• 1	. ,	3.0 7.0	2. 2	• '	4.8 5.2 9.5	3.7	- 60	4.1	56		
127+162	,16			1.3		4.4	2.4		• '										
BPTH					 V1		CAD .	 / =			914B9	APTON	*****	P 81 1-			}	ATTERI	RRG
DELL			8 h	502	5p	805	6711	AL AR	6 N 1 B	601B	6P1B	601B	GITA	6311	6K11	61.11	6H1A	471	472
	REST		H20	ESD	SAR	8p5 TOTL		BC.	CA	HG	BA	Ř	C03	HCQ3	CL	304	803	LQID	PLS'
	OBM-					ent it		単単型の マ ナ										LBIT	Z ND
C#			PCT	PCT		PPH	PCT	CH	(- ико .	/ LITE	8				PCT	
											*~===	+					*		
00-6																			
06-20																			
20-35	36000	4.7	33.3					. 13											
35-57																			
57-83																			
83-98			44.					27											
198-127 127-162		J. 1	14.4					.27											
, TUZ																			
DEFTIF	ICATIO	N OF	THE SP	DIC H	ORIZON	BY LA	BORATO	BY CRI	TBRIA.										
			(PVPADI		 PP D#1	A (CT	 P - DT	T) (87)	BUBRUS	P1 PT	RO C	BC				^ +			
DEPTE	17 US 14		6C51	6451	611	B 6C2	B 6G7	A FE+	AL AL	+C FE	+AL -	1/2							
			EXT	EXT	EIT	EXT	EXT			/		LAY							
			FB	al	С	PE	AL	CLA	Y CL		- D								
			PCT	PCT	PCT	PCT	PCT	1		FE	+AL T	HIC							

⁽A) MICRO-PERETRATION RESISTANCE. A ROD O.6 CM DIA IS SLOWLY PUSHED INTO BULK DEWSITY CLOD, EQUILIBRATED AT O.1-BAR, A DISTANCE OF O.6 CM USING A POCKET PENETROHETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

.9 .25 .4 .10 .3 .10

1.8

.63 .43 .38 270 95 101 Soil classification: Alfic Fragiorthod; coarse-loamy, mixed, frigid.

Scil: Gogebic taxadjunct*.

Soil No.: S72WI-63-1 (LSL Nos. 72L886-72L893) .

Location: Vilas County, Wisconsin; SEk, SEk, Sec. 2, T. 43 N., R. 6 E.; near county road 13.

Climate: Humid continental; mean annual air temperature is about 41° F mean annual precipitation ranges from 28 to 32 inches; and frost-free season is about 90 to 180 days.

Vegetation and land use: Native vegetation was mixed northern hardwood and conifer forests. Most of this soil is in forest. Small areas have been cleared for general farming and some areas are used for livestock pasture.

Parent material: Acid fine sandy loam glacial till.

Physiography: Gently sloping to undulating and rolling glacial ground and recessional moraines.

Topography: Site is on a convex 3 percent slope in a forested area with many hummocks.

Drainage: Moderately well and well drained

Ground water: Deep. Erosion: Slight.

Permeability: Moderately slow in the fragipan, and moderate in remainder of profile.

Described by: Steve Payne and Robert Fox

Sampled by: Robert H. Jordan and Robert L. Juve, September 19, 1972

(Colors are for moist soil unless otherwise stated)

01 4 to 0 cm (1-1/2 to 0 inches). Dark colored decomposed leaves. Hummocky.

A2 72L886 0 to 6 cm (0 to 2 inches). Weak red (2.5YR 5/2) fine sandy losm; weak fine platy structure; very friable; few roots; few fine gravel; strongly acid; clear boundary.

B21hir 72L887 6 to 20 cm (2 to 8 inches). Dark reddish brown (2.5YR 3/4) fine sandy loam; moderate fine subangular blocky structure; very friable; many roots; strongly acid; clear boundary.

B221r 72L888 20 to 35 cm (8 to 14 inches). Dark red (2.5YR 3/6) fine sandy loam; moderate medium subangular blocky structure; very friable; many roots; few fine gravel; strongly acid; clear boundary.

B231r 72L889 35 to 57 cm (14 to 23 inches). Dark red (2.5YR 3/6) fine sandy loam; weak medium subangular blocky structure; firm, brittle, weakly cemented; few pores; few roots; strongly acid; clear boundary.

A'2x 721,890 57 to 83 cm (23 to 33 inches). Reddish brown (2.5YR 4/4) fine sandy loam; massive; firm, brittle, moderate cementation; vesicular; about 10 percent fine and medium gravel; strongly scid; clear boundary.

A&Bt' 72L891 83 to 98 cm (33 to 39 inches). Weak red (2.5YR 4/2) and reddish brown (2.5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; few clay films on peds of Bt in this horizon; few pebbles; many fine pores; strongly acid; clear boundary.

B21't 72L892 98 to 127 cm (39 to 51 inches). Reddish brown (2.5YR 4/4) fine sandy losm; weak medium subangular blocky structure; friable; many thick continuous clay films; few fine gravel and 5 percent of coarse gravel; strongly acid; clear boundary.

E22't 721893 127 to 162 cm (51 to 65 inches). Reddish brown (2.5YR 4/4) heavy fine sandy loam with a few coarse distinct mottles of pinkish gray (7.5YR 6/2); weak medium subangular blocky structure; friable; many thin clay films and clay bridges; a few fine gravel; medium acid.

Remarks: Stones make up about 5 percent of the soil mass throughout the profile. There is about 10 percent medium gravel below 57 cm. A sample of the B3t horizon was given to the University of Wisconsin for thin section inspection.

^{*}This pedon is a taxadjunct to the Gogebic series because it lacks an Al horizon and some of the colors are outside the series range.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

\$01L NO - + - - - 574WI+67-2

CCUNTY - - - LANGLADE

METHO	DS	-14,10	18.ZA1	. 28														
				720			SAMP	LE NOS.	74L8	41-741	.849							
HOR 1		2~ •05	.05- .002	.402	FINE CLAY LT .000	vcos 2- 2 1	CORS 1-	SAND - MEDS -5-	FNES .25-	VFNS 10-	COSI .05	SILT- FNSI -02 -062	VFS1 •005	SAND 2- - 2-	INTR II •2- •02	FINE CLAY TO CLAY	NON- CO3- CLAY PCT	801 15- 8AR TO CLAY
CI 0E1 0E2 CE3 0E4 CE5 0E6 0E7																		
VOL. (GT 2 PCT	GT 75 PCT	75-20	- WE I	GHT - 5-2	LT -074	20-2 PCT	4A1D 1/3- 8AR	4A1H OVEN DRY	4D1	481C	481C	482 A	TENT- 4G1 WRD CM/ CM		6E1B LT 2	3A1A LT .002	8C1A 1/1	
000000000	0000000	00000000	000000000000000000000000000000000000000	00000000		00000000				_ 		126 110 127 122					3.5 3.6 3.6 3.6 3.7	2.9 2.9 2.9 2.9 2.9
6A1A	68 1A	G/N	6C2B EXT FE PCT	TOTL PCT	6NZE CA	MG 6020	6928 NA 	MEG K 9058	SUM EXTB	6H1A BACL TEA	6G1E KCL EXT	5A3A EXTB ACTY	SA 6A NHAC	8D1 NHAC TO	803 CA TO	CA 5F1 SAT NHAC PCT		SAT) 5C1 NHAC
60.9 49.7 53.9 51.4	1.67 2.09 1.64 1.46	34 37 24 33 35			8.3 7.5 4.1	3.3 2.4 1.5	•2 •2 •2 •2	1.7 1.0 .3 .0	11-1 6-1 6-8	131 119 165 161 171 147		130 171 168 179	102 102 86.6 90.2			6 7	9 4 4 5 5	15 11 6 6 9
8E1 8	PH (8 A H 2 C	SC2 ESP	NA SE SAR	SALT 8D5 TCTL SOLU PPM	6FlA	BAIA EC MHOS/	6N 1B CA	6018 Mg	6P1B NA	K 6018	611A C03	HCD3 e71v	CL CK1 A	6L1A SD4	6M1 A NO3	4FI LQID LMIT	4FZ PLST
7900 12000 15000 18000	3.0 3.5 3.4 3.5	1200			370 350 60 70		.12 .15 .09 .07 .06	•1 •2 •1 •1 TR TR	.1 TR TR TR	.1 TR TR TR TR	.3 .2 TR TR TR	0 0 0	1.8 1.5 1.2 1.2 .6	.0	.2 .9 .5 .1 .1	.0		
8F Minl	(STAT (FIBE UNRB	E OF (86 R VOLI RUB PCT	ECOMPO E PYROF SOLUE (MUNS	SITION PHCSPH SILITY COLON	N) PH 8C1 T .01! CAG! R)	(BUL E 4A3A H FILD L STA1 G/CC	K DEN 4A1 1/31 REN G/C	COLE AD1 RE- WET C	SUBS RES- IDUE	6 (484 • Fili • Stat	4810 1/38 REWT	48: 15- 84:	2 4C - WR R CM	1 D /				
6 4 1	88 31 26 32 22 22	44 18 11 14 11 28	10YF 10YF 10YF 10YF	7-5/- 5/- 6/- 5/-	4 3.0 3 3.0 3 3.1 4 3.1 3 3.3 3 3.4	.12 .09				787 1090 1250 1380		77.61.38.	8 1 7 7					
	CI OE1 OE2 CE3 OE4 CE5 OE6 OE7 DE8 PARTIC OC CC CC CC CC CC CC CC CC C	CI OE1 OE2 CE3 OE4 CE5 OE64 CE5 OE67 GE8 PARTICLE SI. GT GT GT GT GT GT GT CC GC	SANC 2	SAND SILT 20505 .002 [SAND SILT CLAY 205 .002 .002 [SAND SILT CLAY CLAY 2	SAND SILT CLAY CLAY VCOS 205- LT LT LT 205 .002 .002 .0002 1 CI	SANC SILT CLAY CLAY VCOS CORS 205- LT LT 2- 105 .002 .002 .0002 1 .5 CI OEI OEI OE2 CE3 OE4 CE5 OE6 OE7 CE7 OE8 PARTICLE SIZE ANALYSIS, MM. 3B. 381, 382)(BUI VOL. (MEIGHT) 4A1D GT GT 75-20 20-5 5-2 LT 20-2 1/3- PCT PCT (PCT LT 75) LT20 G/CC O C O O O O O O O C C O O O O O O C C O O O O	SANC SILT CLAY CLAY VCOS CORS MEDS 205- LT LT 2- 1505 .002 .002 .0002 1 .5 .25 (SAND SILT CLAY CLAY CLAY VCOS CORS MESS FMESS FM	SAND SILT CLAY CLAY COS CORS MEDS FRES VENS 205- LT LT 2- 15251005002 .002 .002 .1 .3 .251005002 .002 .002 .1 .3 .251005002 .002 .002 .1 .3 .251005002 .002 .002 .1 .3 .251005002 .002 .002 .1 .3 .251005002 .002 .002 .1 .3 .251005002 .002 .1 .3 .251005002 .002 .1 .3 .251005002 .002 .1 .3 .251005002 .002 .1 .1005002 .1 .1005002 .1 .10061 .1010071 .1010081 .1010081 .1010081 .1010081 .1010081 .1010081 .10101 .101010101 .101010101 .101010101 .101010101 .101010101 .101010101 .10101010-	SAND SILT CLAY CLAY VCDS CORS MEDS FRES VFNS COST 205- LT LT 2- 15251005 .002 .002 .002 .002 1 .5 .25 .10 .05 .002 .002 .002 1 .5 .25 .10 .05 .002 .002 .002 1 .5 .25 .10 .05 .002 .002 .002 1 .5 .25 .10 .05 .002 .002 .002 .002 1 .5 .25 .10 .05 .002 .002 .002 .002 .002 .002 .002	SAND SILT CLAY CLAY VCOS CORS MEDS FRES VERS COSI FMSI 2-05-LT LT 2-1-5-25-10-05 .02 .05-002 .002 .002 1 .5 .25 .10 .05 .02 .002 .05-002 .002 .002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .05 .02 .002 .06-002 1 .5 .25 .10 .0 .00 .00 .00 .00 .00 .00 .00 .00	SAND SILY CLAY CLAY VCDS CORS MEDS MEDS VFNS COSI FMSI VFSI 2 05- LY LY CLAY CLAY VCDS CORS MEDS MEDS VFNS COSI FMSI VFSI 2 05- LY LY CLAY CLAY VCDS CORS MEDS MEDS VFNS COSI FMSI VFSI 2 05- 02- 0002 1 - 5- 27- 10- 05 .02 .005 .02 .005 CI	SAND SILT CLAY CLAY USCS CORS MEDS FMES FMES COST FMS: VESTS SAND 20 - 002 - 102 - 11 - 2- 1 - 5- 23-110 - 05 - 02 - 002 - 002 - 2- 002 - 102 - 102 - 103 - 002 - 102 - 102 - 103 - 002 - 102 - 103 - 103 - 002 - 103 -	SAND SILV CLAY CLAY VCDS CORS MESS PRES VERS COST PRIST VEST SAND II 1	SAND SILT CLY CLY VCLY STORS MESS PRES VERS COST PRES VERS SAND III CLAY CLY VCLY CLY VCDS CORS MESS PRES VERS COST PRES VERS SAND III CLAY CLY CLY VCLY V	SAND SILT CLAY FIRE (====================================

Soil classification: Typic Borosaprist, dysic.

Series: Greenwood taxadjunct.

Soil No.: S74WI-67-2.

Location: Langlade County, Wisconsin; SE's, NE's, Sec. 26, T. 33 N., R. 10 E.; 200 feet west of road. About 45.20 north latitude and about 89.00 west longitude.

Climate: Humid continental. Mean annual temperature is 42.2° F; mean July temperature is 68.5° F; mean January temperature is 13.8° F; mean annual precipitation is 29.86 inches with nearly two-thirds of this during the growing season; total annual snowfall is 48 inches; frost-free season is 138 days at Antigo but less on the organic soil areas.

Parent material: Organic soil material derived from mosses, grasses, reeds, and sedges overlying limnic material.

Physiography: Deep depression associated with a lake which has filled in with organic material; surrounding uplands is part of the Cary recessional moraine and consists of rolling gravelly loam soils. Elevation is about 1,600 feet.

Scattered white birch, black spruce, tamarack, and white pine, with an understory of Labrador-tea, leatherleaf, cranberry, blueberry, sphagnum moss and native bog forbs.

Size of area: About 60 acres.

Distance to adjacent mineral soil: About 160 feet to east, north, and south; west side is bordering on Summit Lake.

Depth to water table: 1 foot.

Microrelief: Low hummocks of 6 to 18 inches over the entire bog.

Subsidence: No evidence of subsidence.

Soil temperature: Measured soil temperature of 11.5° C at 50 cm.

Described and sampled by: G. Hudelson, A.J. Klingelhoets, G.B. Lee, Warren Lynn, W.E. McKinzie, R. Newbury, and S. Payne on Aug. 7, 1974. Samples were obtained from a pit dug with a spade to 45 inches and then with a posthole digger and peat sampler below 45 inches.

> Mat of living sphagnum with many live roots of sphagnum, shrubs, and forbs, about 5 cm thick. (Not sampled.)

0 to 10 cm. Dark brown (10YR 3/3) broken face fibric material, very dark grayish brown (10YR 3/2) rubbed, and pale brown (10YR 6/3) pressed; fiber content 95 percent, 60 percent rubbed; primarily sphagnum fiber; matted structure; friable; less than 10 percent mineral material; many fine roots; pH 4.2 (Truog); abrupt wavy boundary.

Oct 741842 10 to 16 cm. Very dark brown (10YR 2/2) broken face hemic material, black (10YR 2/1) rubbed and pressed; fiber content 40 percent undisturbed, rubbed 18 percent; weak fine subangular blocky structure; very friable; mixture of sphagnum and herbaceous fibers; many fine fibrous roots; 20 to 25 percent mineral matter; pH 4.3 (Truog); clear wavy boundary.

Oe2 74L843 16 to 50 cm. Very dark brown (10YR 2/2) broken face, hemic material, black (10YR 2/1) rubbed, very dark brown (10YR 2/2) pressed; fiber content 60 percent, 20 percent rubbed; fibers primarily herbaceous; sedge fibers are yellowish brown (10YR 5/4, 5/6); weakly matted to weak fine subangular blocky structure; very friable; 20 percent mineral matter; few sedge and forb roots; pH 4.3 (Truog); gradual irregular boundary.

741844 50 to 90 cm. Very dark brown (7.5YR 2/2) broken face hemic material; very dark brown (10YR 2/2) rubbed and pressed; about 70 percent fibers undisturbed, rubbed 20 percent; primarily herbaceous fibers; less than 20 percent mineral material; weak fine subangular to matted structure; very friable; few sedge roots; pH 4.3 (Truog); gradual wavy boundary.

Oe4 74L845 90 to 135 cm. Dark brown (7.5YR 3/2) broken face hemic material, very dark brown (7.5YR 2/2) rubbed and pressed; about 50 percent fiber unrubbed and 20 percent rubbed; weak medium subangular blocky structure; very friable; less than 20 percent mineral material; few wood fragments from spruce and tamarack; pH 4.5 (Truog); gradual wayy boundary.

74L846 135 to 155 cm. Dark brown (7.5YR 3/2) broken face hemic material, very dark brown (7.5YR 2/2) rubbed and pressed; 50 percent fibers and 20 percent rubbed; primarily herbaceous material; less than 20 percent mineral content; weakly matted; very friable; pH 4.5 (Truog); gradual wavy boundary.

74L847 155 to 200 cm. Sampled separately but not differentiated from the horizon above. 0e6

74L848 200 to 260 cm. Sampled separately but not differentiated from the Oe5 horizon description. 0e7

74L849 260 to 300 cm. Sampled separately but not differentiated from the Oe5 horizon description. 0e8

Remarks: At a depth of 144 to 160 inches, the peat contained a high percent (40 percent) of sedimentary peat. This material had a fiber content of 30 percent unrubbed and 10 percent rubbed. It was very dark brown (7.5YR 2/2) in color; massive; very frisble; pH 5.8 (Truog).

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

COUNTY - - - ONEIDA

GENERAL METHODS- - -14.1818.241.28

GENERAL	HETHO	05	-1A,1	81B,2A	1.28			SAMP	LE NOS.	74189	1-74L8	99							
DEPTH	HCRI	ZON	5ANC	.05-	LŢ	CLAY	vcos 2-	cors 1-	MEDS	FNES	VFNS .10~	COSI	FNSI FNSI •02	VF\$1) SAND - 2-	INTR II .2-	FINE CLAY TO		8D1 15- BAR
CM						.000	2 1 - , = '= :=		- 25 PCT		-05 H	- 02	-002	- 002	- 10		CLAY PCT	PCT	CLAY
000-008 008-013 013-023 023-050 050-070 070-100 100-180 180-312	011 011 011 011 011 011 011 011 011 011																		
DEPTH					IGHT -	LT	, 382)) 20~2 PCT	4A1D	K DENS 4A1H OVEN DRY	401		-WATE 481C 1/3- BAR		NTENT- 4C1 WRD CM/			DNATE 3A1A LT •002	(PH 8C1A 1/1 H2O	
CM	PCT		(PCT I	7 75)		6/CC	€/cc		PCT	PCT	PCT	CH		PCT		,	
000-008 008-013 013-023 023-050 050-070 070-100 100-180 180-312 312-370	00000000	999999	0000000	0000000	000000000000000000000000000000000000000		0 0 0 0 0 0	.14 .12 .05 .04	.34 .32 .16 .09		620 734 1440 1950	563 620 1340 1820	107 169 129 124 122 122	.69 .73 .66 .73				3.6 3.6 3.7 3.7 3.8	2.8 2.9 2.8 2.9 2.9 3.1
DEPTH (DRGANII 6AIA DRGN CARB		ER 1 C/N		PHCS TOTL	6 N 2 E	TRACTA 6020 MG			4A) SUM EXTB	ACTY 6H1A BACL TEA	AL 6G1E KCL EXT		EXCH) 5A6A NHAC	RATIO 801 NHAC	RATIO 8D3 CA CO	CA 5F1 SAT NHAC	(BASE 5C3 EXTB ACTY	SAT) 5C1 NHAC
CM	PCT	PCT		PCT	PCT	(- -	MEQ					!	CLAY		PCT		PCT
000-008 008-013 013-023 023-050 050-070 070-100 100-180 180-312 312-370	43.2 54.3 47.9 49.8	2-10 2-12 1-93	42 21 26 25 27 34			8.5 4.7 6.2 10.7 5.6 7.5	6.1 2.7 1.9 3.0 1.5 2.0	.5 .2 .8 .3 .4	2.7 .6 .2 .3 .2	17.8 8.3 8.5 14.8 7.6 9.9	148 141 168 178 171		149 176 186	90.5 95.0 102 189 93.3 102		1.4 1.7 3.3 3.6 3.7 3.8	6	11 6 5 4 5	20 9 8 8 8 10
DEPTH (SATUR BE1 REST OHM- CM	PH I	8A H2E PCT	5D2 ESP PCT	NA SE SAR	8D5 TOTL SOLU PPM	6F1A	MHCS/	GN18 CA		6P1B NA	6918 K		6JIA HCQ3		6L1A 504		4F1 LQID LMIT	4F2 PLST
000-008 008-013 013-023 023-050 050-070 070-100 100-180 180-312 312-370	6500 7500 12000 12000	3.2 3.8 3.4 3.6	180 546 785 951 979 1110	i		90 140 250 120 60 70		.18 .19 .17 .10 .09	•1 •3 •1 •1	-1 -1 -1 TR TR TR	.1 .1 .1 TR TR	.5 .1 TR .0	0 0 0 0	.9	.2 .0 .5 .0	.0 .2 .0 .0	.0		
DEPTH	(8F MINL	(STATE	E OF I BG R VOL' RUB	DECOMP	DSITIO BH PHOSPH BILITY	N) PH 8C1E 7 .017 CACL	4ABA FILD STAT G/CC	K DEN 4A11 1/3	COLE 401 RE-	SUBS	(~ - 484 FILD STAT	WATER 4810 1/38 REW1	CONTE	Z 4C: - WRI R CM.) 1 0				
CCG-008 008-013 013-023 023-050 050-070 070-100 100-18C 180-312 312-37C		80 45 61 55 52 53 50	68 6 8 10 17 23 22 1	10 YI	R 5/4 R 5/3 R 6/4 R 7/4 R 6/4	3.3 3.0 3.1 3.2 3.4 3.7	.16 .14 .13 .09 .08	.20 .11 .01	1 .17 2 .17 1 .13 5 .22	60 73 68 49 43 34	542 649 722 1060 963 1040 57	352 337 437 1070	101 68 45 64 58	5 .6 8 .5 1 .4	6 1	نېچچ <u>ن</u>		* * * * * * * * * * * * * * * * * * *	

61 Soil classification: Typic Borohemist; dysic. Series: Greenwood. S74WI-85-1. Soil No.: Location: Oneida County, Wisconsin; SWs, SWs, Sec. 20, T. 35 N., R. 11 E.; 60 feet south of old highway in powerline right-of-way. About 45 30 N. latitude about 89 14 W. longitude.

Climate: Humid continental. Mean annual temperature is 41.6 F; mean January temperature is 12.8 F; mean annual precipitation is 30.78 inches with nearly two-thirds of the precipitation falling during the growing season; total amount of snow is 55.6 inches; the growing season averages 127 days, but less in organic areas (data from Rhinelander, WI, weather bureau substation.) Parent material: Deposits of herbaceous material more than 51 inches thick. Physiography: Large glacial depression in Cary drift. Vegetation: Black spruce, tamarack, blueberry, Labrador-tea, and sphagnum moss. Size of ares: About 1,600 acres. Distance to adjacent mineral soil: About 400 feet to the east. Depth to water table: 75 cm. Microrelief: Hummocky. Hummocks are 18 inches high. Subsidence: None Soil temperature: Measured soil temperature of 10.5° C. at 50 cm.
Described and sampled by: G.W. Hudelson, W.C.Lynn, W.E. McKinzie, G.B. Lee, R.L. Newbury, S.W. Payne, and A.J. Klingelhoets. Sampled from pit to 40 inches and peat sampler below 40 inches. Not sampled: 5 to 0 cm. Mat of moss and roots, 7/1 291_/\ t ~ 2 nm 7/1207_0_to_17.on Now! beam C2 CVD 2/15 touter 4--

- (- /-- .

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE __ SOIL Nos. S64WI-2-1 SOIL Hibbing taxadjunct Ashland County, Wisconsin _ LOCATION _ SOIL SURVEY LABORATORY __Lincoln, Nebraska 19829-19837 June, 1968 LAR. Nos. GENERAL METHODS: 1A. 1B1b. 2A1. Size class and particle diameter (mm) 3AI SHt Coarse fragments 2A2 382 381 Fine Int. III 0.005 Depth Horizon Clav Coarsa Very fine lot 17 (2-0.05) (0.05-<0.074 0.002 Vol. Wt. (2-1) (In.) (< 0.002) (1-0.5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-0.002) (0.2-0.02) (2-0.1)19-2 19-2 [a <19> ---Pct. of 0.6 7.8 0-2 Αl 31.5 52.4 16.1 6.2 13.4 15.7 36.7 23.7 72.8 11.6 29.2 25.6 2-5 A2 31.6 52.0 16.4 1.6 3.9 5.8 12.6 7.7 14.8 37.2 23.9 72.8 13.3 4 5-10 A&B 27.7 46.6 25.7 3.2 5.0 11.3 7.0 12.6 9.8 34.0 20.7 76.3 1.2 12.9 34.4 5.2 5.3 24.6 12.3 10-15 B21t 17.5 48.1 0.6 1.4 2.9 7.4 19.1 85.6 10.8 \mathbf{tr} 19.2 11.8 34.6 48.3 0.4 2.8 7.1 24.6 15-23 B22t 10.0 17.1 1.5 10.1 tr 4.8 8.9 26.7 86.8 48.4 2.6 17.4 <u> 35.6</u> 0.7 <u>6.6</u> 11.2 8.8 23-30 ВЗ 16.0 10.8 tr 0.5 2.0 27.1 26.6 89.6 11.8 30-44 Clca 12.6 34.8 52.6 1.4 4.9 3.8 7.7 14.2 tr 44-55 34.2 3.2 4.4 7.6 13.0 C2 17.4 48.4 7.3 16.0 85.0 11.7 tr <u>55-65</u> C3 17.7 36.2 46.1 0.7 4.8 8.6 27.6 17.4 12.9 85.0 11.9 tr 4Dl ЗА1Ъ Carbonate Bulk density Water content Ηq 3Ala 6A1a 681a 8Cla 4Ala | 4Ald | 4A1b 4B4 4B2 | 4C1 801b 4Blci Fine as CaCO3 Non-Nitrogen C/N Depth Organic Carbon Field-1/3-Air-COLE Field-1/3-15- 1/3-to Clay | Sat. 6Elb 3Ala carbon (1:1)(In) State State Bar 15-Ba O.0002Paste Bar Dry 6E2a < 0.002ate b men . mm, Clay 2mm in./in Pct. Pct. Pct. g/cc Pct. Pct. 0,21 1.14 0.010 33.1 7.0 N_2 3,17 1.17 25.6 5.6 0.17 าห ٦6 1.14 5.2 5.0 2-5 0.83 0.059 14 116 1.3c 0.003 1.84 1.83 13.7 0.12 5.3 5-10 0.50 0.042 26 1.82 7.2 1.77 0.064 21.0 1.81 0.047 16.9 14.5 5.1 10-15 0.045 48 1.59 1.47 24.7 0.15 0.36 20.6 -(s) 6.7 15-23 0.10 48 1.71 1.58 21.0 14.7 0.10 1.69 1.59 1.78 0.040 18.4 22,1 15.3 0.11 7.9 23-30 0.08 48 1.82 0.024 18.1 19.4 15.6 0.06 7.4 8.3 30-77 0.12 16 5 1.74 8.5 8.6 1.83 0.032 19.9 20.9 42 1.72 1.67 15.0 0.10 44-55 36 0.09 1.72 1.84 0.024 21.0 20.2 13.4 0.12 55-65 0.08 16 40 1.72 8Bla ВB 8ns 8D3 Base saturation 6Hla Cat.Exch.Cap 6Gld | 6C2a 8E1 5Bla Extractable bases 5C3 501 602a | 6P2a 6Q2a 5A3a 5A1a KC1-Resis-Elec Water Est. 6N2a Ext. Ext. NH₁₄OAc tivity Depth Acidity Sum Ext. Iron Cond at Total Ca/Me Sum NH_LOAc (in.) Cations Salt in Cation ĸ Sum Al Ca Mg 8.8 CEC Fе ohmsmmhos Soil Pct. cm. ppm. meq/100 Pct cm. 10.9 3.7 8.3 19.2 13.5 0.1 3.2 81 0-2 8.1 2.5 tr 0.3 0.6 2.3 37 49 6.4 10.1 7.5 2-5 2.5 1.1 tr 0.1 0.7 0.9 61 42 8.5 5-10 3.6 0.2 14.6 ho.o 1.0 1.6 2,3 tr 85 26.3 28.4 22.0 23.9 71 18.8 1.1 1.4 1.3 10-15 10.4 0.1 0.5 7.5 86 0.4 24.4 4.0 1.4 102 15-23 14.3 9.8 0.1 1.3 22.7 20.4 17.1 1.8 23-30 30-44 14.1d 8.0e 0.4 1.3 0.2 54.5 1.0 220 0.4 2,600 0.35 2.1 6.5e 0.2 13.5d 0.2 0.4 18.0 14.3 1.0 1.5 44-55 6.9e 10.54 16.7 13.i 1.1 1.0 <u>55-65</u> 8.6a 7.5e 0.2 0.4

_						
		atios t	o Clay	8D2	_	N
	Depth (In.)	NH ₁₄ ОА с	Ext.	15-Bar		
	(111.)	CEC	Iron	Water		
-	0-5	0.84	0.04	0.44		
1						
1	2-5	0.47	0.05	0.31		
	5-10	0.38	0.04	0.28		
1	LO-15	0.46	0.03	0.30		
1	L523	0.50	0.03	0.30		
	23-30	0.43	0.03	0.33		
	30 <u>- Î</u> H	0.36	0.02	0.33		
1	+4-55	0.34	0.02	0.36	Ī	
1_4	5-65	0.33	0.03	் கூட	Ļ.,	_
"	•		_	•		
1						
1		1	ı	I		i

Fe-Mn nodules comprise 50 to 60 percent of the very coarse sand above 23 inches. Carbonate comprises about 5 percent of the total sand below 23 inches.

 $^{6 \}text{ kg/m}^2$ to 60 inches (Method 6A). ъ.

Estimated. C.

KC1-TEA extraction (Method 6N4b). d.

KC1-TEA extraction (Method 604b).

Soil classification: Typic Glossoboralf; fine, mixed.

Soil: Hibbing taxadjunct*.

Soil No.:

Location: Ashland County, Wisconsin; NE's, NE's, Sec. 6, T. 46 N., R. 4 W; 130 feet south of Highway 112 and 150 feet west of Highway 118.

Climate: Humid continental; mean annual temperature ranges from 38° to 44° F; mean annual precipitation ranges

from 26 to 30 inches; and frost-free season is about 10 days.

Vegetation and land use: Native vegetation was mixed hardwood and pine forest with bracken fern, blueberry, hazelnut, rose, grasses, and weeds in the lower story vegetative cover and spruce, pine, elm, oak, and aspen in the upper story. Some large areas have been cleared and used for general farming.

Parent material: Calcareous clay glacial till.

Physiography: Gently sloping or undulating to hilly glacial till plain

Topography: Site is on a 2 percent convex slope with a west aspect.

Drainage: Moderately well and well drained.

Ground water: Deep. Erosion: Slight

Permeability: Slow.
Described by: A.J. Klingelhoets, August 24, 1964.

(Colors are for moist soils unless otherwise stated)

Al 19829 0 to 5 cm (0 to 2 inches). Very dark grayish brown (10YR 3/2) silt loam; moderate medium granular structure; friable; many fine grass and tree roots; medium acid; clear wavy boundary. (A thin 1/4-inch mat of leaves, needles, and grass occurs on the surface at this site but was not sampled.)

A2 19830 5 to 13 cm (2 to 5 inches). Reddish gray (5YR 5/2) silt loam; moderate medium platy structure; friable; many fine roots; many earthworm holes and casts of A1; medium acid; clear wavy boundary.

A6B 19831 13 to 25 cm (5 to 10 inches). Reddish gray (5YR 5/2) silt loam A2; weak medium platy structure; friable; tonguing down into reddish and dark reddish brown (5YR 4/4 and 3/4) silty clay B2 having weak medium columnar structure which parts to moderate medium subangular blocks; very firm; isolated peds of B2 in the upper portion; few fine pebbles; many roots; some earthworm holes; medium acid; clear irregular boundary.

B21t 19832 25 to 38 cm (10 to 15 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium angular and subangular blocks; very firm, plastic, sticky; coatings of reddish gray (5YR 5/2) uncoated silt on vertical faces of prisms; thin continuous clay films on faces of peds; few fine pebbles; many roots; medium acid; gradual wavy boundary.

B22t 19833 38 to 58 cm (15 to 23 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium angular and subangular blocks; very firm, plastic, sticky; thin continuous clay films on faces of peds; roots common; few fine pebbles; slightly acid; gradual wavy boundary.

19834 58 to 75 cm (23 to 30 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium angular and subangular blocks; very firm, plastic, sticky; thin continuous clay films; few dark reddish brown (5YR 3/2) organic stains on vertical faces of prisms; few roots and fine pebbles; mildly alkaline; gradual wavy boundary.

Clca 19835 75 to 100 cm (30 to 40 inches). Raddish brown (2.5YR 4/4) clsy; moderate coarse prismatic structure parting to moderate medium subangular blocks; very firm, plastic, sticky; thick clay films and pinkish gray (5YR 7/2) lime coatings on pressure faces (slickensides); many pinkish gray (5YR 6/2 and 7/2) soft lime segregations less than 5 mm in diameter; few roots and fine pebbles; strong effervescence; clear wavy boundary.

C2 19836 100 to 138 cm (40 to 55 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium blocks; very firm, plastic, sticky; thick clay films and pinkish gray (7.5YR 7/2) lime costings on pressure faces (slickensides); few fine roots and pebbles; discontinuous thin (3/4-inch) loam lens occurs at top of this horizon; strong effervescence; clear irregular boundary.

C3 19837 138 to 163 cm (55 to 65 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to weak coarse subangular blocks; very firm, plastic, sticky; thick clay films and pinkish gray (7.5YR 6/2 and 7/2) lime coatings on pressure faces (slickensides); few roots to 60 inches; strong effervescence.

Remarks: Few stones and pebbles occur throughout the profile. Sand content of B and C horizons was estimated at 15 percent.

Soil temperatures: Depth

(inches)	Temperature
20	14° C. 14° C.
30	14° C.
40	13° c.

^{*}This pedon has lower base saturation in portions of the argillic horizon than that required for the Hibbing series.

SOIL CONSERVATION SERV
SOIL SURVEY LABORATORY Lincoln, Nebraska LAB. Nos. 19838-19846 June, 1968
GENERAL METHODS: 1A, 1B1b, 2A1, 2B

									s and parti				3AL _					
			Total				т	Send		\$(#					Coa	se fragme	
Depth (ld.)	Herizon	Sand (2-0.05) <u>8</u>	SiR (0.05 0.002)	Clay (< 0.002)	Very coerse (2-1)	Course (1-0.5)	Medium (0.5-0.25)	Fine (0.25–0.1)	Very fine (0.1-0.05)	0.05-0.02	Int. III (0.02– 0.002)	int. [] (0.2-0.92)	(2-0.1)	<0.074	0.005- 0.002	Vol. 19-2	31 Wt 19-2	1
0-5	Al	23.1	I 60 2	17.6	Λ ε	2.8	t. of ≺ 2 4.੪	<u> </u>	5.3	1 15 6	ं रु प्र	25.5	10 17	70 ×	14.8	Pet		19
2-4	A2	16.6	59.3 65.4	17.6 18.0	0.5 0.6	1.6		9.7 6.7	4.2	15.5	43.8 54.5		17.8	79.8			1	
4-7	A&B	12.9	52.7	34.4	0.4	1.4	3.5 2.7	5.1	3.3	10,9	44.8	18.5 13.8	12.4 9.6	85.9	21.1 18.4		l tr	
7-13	B21t	15.3	35.6	49.1	0.7	1.5	3.0	6.2	3.9	6.6	29.0	13.7	11,4	86.9	14.2	<u> </u>	tr	┢
13-21	B22t			54.8	0.2	1.5	2.7	5.8	3.7	6.8	24.5	13.7	10.2	00.9	11.2		tr	
21-27	B3	13.9 16.8	31.3	45.2		1.9	3.2	6.7	4.1	7.0	31.0	14.6	12.7	85.6	16.2		tr	
27-37	Clca	15.3	38.3	46.4	0.5	1.8	3.1	6.2	3.7	6.4	31.9	13.3	11.6	86.8	16.9	ł	2	
37-50	CZCZ	14.8	37.5	47.7	1.1	1.7	2.8	5.7	3.5	6.3	31.2	12.9	11.3	87.2	16.9		2	l
50- 60	c <u>s</u>	13.8	37.0	49.2		1.5	2.7	5.5	3.4	6.7	30.3	13.1	10.4	88.2	15.2		tr	
					_						 							L
, ,	6Ala	681a	Ī	Carbo	nate	3A1a	I	Bulk densit	7	4D1	W	later conte	nt				pH	
	1 '		C/N	as Ca		Non-	4Ala	4Ald	4Alb	l	4B4	4Blc	4B2	401			l	8C1
Depth (in.)	Organic	Hitrogen	Wn	бель	3Ala	Carbon-	Field-	1/3-	Air-	COLE	Field-	1/3-	15	1/3-ta				(1:
41111	-			6E2a	∞.00€		State	Bar	Dry		State	Bar	Bar	15-Bar				^{(1:}
	Pet.	Pct.	,	<2mm	yyun Pct.	Clay Pet.	gjec	g/cc	g/cc		Pct,	Pct.	Pct.	in./in				
0-2	6.43	0.437	15	Pct.		18	-						13.1			_	-	6
2-4	0.60	0.058	16			18	1.70	1.70	1.70	۱.	18.7	18.0	4.2	0.23				6.
4-7	0.59	p.0,0	10			34	1.74	1.74		0.003	17.3	17.0	9.6	0.13				6.
7-13	0.44	-		-(s)		49	1.59	1.61		0.036	21.7	19.8	14.4	0.09				6.
13-21	0.30			tr(s)	-	55	1.61	1.52	1.74	0.047	20.2	23.2	16.0	0.11				7.
<u>21-27</u>	0.08			12	3	<u>42</u>	1.74	1.69	1.82	0.047	16.9	18.7	14.0	0.08		_		<u>L</u> 8.
27-37	0.07		<u> </u>	15	- 4	42	1.74	1.67	1.83	0.032	18.5	20.1	14.1	0.10				8,
37-50	0.08			17	6	42	1.81	1.76	1.86	0.017	17.6	18.7	15.5	0.06				8,
50-60	0.08			16	_6_	43	1.74	1.69	1.84	0.028	19.9	21.2	16.0	0.09	_			8.
		<u> </u>	<u> </u>	ļ				<u> </u>					7611		8D3		Base sat	
	(ma)	Extractel	6P2a	5 <u>Bla</u>		Ext.		cch.Car	.6Gld KCl-	602a Ext.					оиз .	1	503	5C
Depth	6N2a	602a	orza.	6q2a		Acidity		NHLOAC		Iron					Ca/Mg		Sum	NH _L
(in.)	Ca Ca	Mg	Na	ĸ	Sum	VCTT (2	Cations		Al	as					V/		Cattlons	
	"		""	. "	Dun		COLLOIN	Ì	***	Fe								😘
			<u> </u>	<u>'</u>	mag/100 (n 	•	<u>' , </u>	\longrightarrow	Pet.							Pct.	Pcf
o~2	17.0	4.9	0.1	0.4	22.4		31.7	22.5	T - 1	0.6					3.5		71	10
2-4	4.3	2.6	0.1	0.1	6.5	4.3	10.8	7.6	1	0.8					2.2	1	60	8
4-7	7.4	3.9	0.1	0.2	6.5 11.6	6.í	17.7	13.3	L	1.3	<u></u>	<u> </u>		<u> </u>	1.9		_66	_ {
7-13	12.5	6.9	0.2	0.4	20.0	6.8	26.8	21.3	1	1.4					1.8		75	3
13-21	15.8b	8.6c	0.2	0.5	25.1	3.6	28.7	25.6	l	1.4					1.8		87	9
21-27	13.66	5-69	0.2	0.3	19.7	ļ	Ļ	17.1	L .	1.3		_			2,4	_		
27-37	12.50	5.6c	0.2	0.3	18.6			15.0	l	1.0					2.2			
37-50	10.86	6.3c	0.2	0.3	17.6			13.6	1	1,1					1.7			
<u>50-60</u>	<u> 9-9b</u>	7,2c	0.2	0.4	17.7			13,8		1.0	-	_			<u> 1.</u> 4_			
	Ratios t	o Clay	802	<u> </u>		 	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>				. 03 :-		<u> </u>
(la,)	NH _L OAc	Ì	15-Bar	<u>'</u>		a. b.	KC1-T	nate co EA exti EA exti	action	ı (Met)	nod 6N	₽ Ъ).	or the	s sands	oero.	1 ST 71	rcnes.	

,	Ratios t	o Clay	8D2	
(la.)	NH _L OAc CEC		15-Bar Water	
0-2	1.25	0.03	0.73	
2-4	0.42	0.04	0.23	
4-7	0,39	0.04	0.28	
7-13	0.43	0.03	0.29	
13-21	0.47	0.03	0.29	
21-27	0.41	0.03	0.33	
27-37	0.36	0.02		
37-50	0.32	0.03	0.37	
50-60	0.32	0,02	0.37	
	1	ı		ı

c. KC1-TEA extraction (Method 604b).

Soil classification: Glossic Eutroporalf; fine, mixed.

Soil: Hibbing taxadjunct*. Soil No.: S64WI-4-1.

Location: Bayfield County, Wisconsin; SW4, Sec. 16, T. 47 N., R. 5 W.; 130 feet north and 120 feet east of section

Climate: Humid continental; mean annual temperature ranges from 38° to 44° F; mean annual precipitation ranges from 26 to 30 inches; and frost-free season is about 109 days.

Vegetation and land use: Native vegetation was pine and spruce forests with bracken fern, wild strawberry, hazelnut, grasses, and weeds in lower story vegetative cover, and spruce, pine, aspen, birch, and cherry in upper story. Some areas have been cleared and are being used for general farm-

Parent material: Calcareous clay glacial till.

Physiography: Gently sloping in undulating to hilly glacial till plain.

Topography: Site is in a 1 percent east facing slope.

Drainage: Moderately well to well drained.

Ground water: Deep. Erosion: Slight. Permeability: Slow.

Described by: A.J. Klingelhoets, August 24, 1964.

(Colors are for moist soil unless otherwise noted)

Al 19838 0 to 5 cm (0 to 2 inches). Very dark gray (10YR 3/1) silt loam; moderate medium granular structure; friable; many fine grass and tree roots; slightly acid; clear wavy boundary.

A2 19839 5 to 10 cm (2 to 4 inches). Reddish gray (5YR 5/2) silt loam; weak to moderate medium platy structure; friable; many fine roots; many earthworm holes and casts of Al; slightly acid; clear irregular boundary.

A&B 19840 10 to 18 cm (4 to 7 inches). Dark reddish gray (5YR 4/2) silt loam A2; weak medium platy structure; friable; tonguing of A2 down into reddish brown (2.5YR 4/4) silty clay B2; B2 has moderate medium columnar structure that parts to moderate medium subangular blocks; very firm; isolated peds of B2 in the upper portion; few small pebbles; many roots; some earthworm holes; medium acid; gradual irregular boundary.

B21t 19841 18 to 33 cm (7 to 13 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium angular blocks; very firm, plastic, sticky; thick coatings of dark reddish gray (5YR 4/2) clean silt coatings on the vertical faces of prisms; thin continuous clay films on faces of peds; few small pebbles; roots common; slightly to medium acid; gradual wavy boundary.

B22t 19842 33 to 53 cm (13 to 21 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium angular blocks; very firm, plastic, sticky; thin continuous clay films; few dark reddish brown (5YR 3/2) organic stains along vertical cracks and root channels; few small pebbles; roots common; slightly to medium acid; gradual wavy boundary.

B3 19843 53 to 68 cm (21 to 27 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium angular and subangular blocks; very firm, plastic, sticky; thin continuous clay films; few roots; few small pebbles; mildly alkaline; gradual wavy boundary.

Clca 19844 68 to 93 cm (27 to 37 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to moderate medium subangular blocks; very firm, plastic, sticky; thick clay films and pinkish gray (7.5YR 6/2) and light gray (10YR 7/2) lime coatings on pressure faces (slickensides); many pinkish gray (5YR 6/2) soft lime segregations less than 5 mm in diameter; few small pebbles; strong effervescence; clear wavy boundary.

C2 19845 93 to 125 cm (37 to 50 inches). Reddish brown (2.5YR 4/4) clay; moderate coarse prismatic structure parting to weak coarse subangular blocks; very firm, plastic, sticky; thick clay films and pinkish gray (7.5YR 6/2) and light gray (10YR 7/2) lime coatings on pressure faces (slickensides); few small pebbles; strong effervescence; clear irregular boundary.

125 to 150 cm (50 to 60 inches). Reddish brown (2.5YR to 5YR 4/4) clay; moderate coarse prismatic structure parting to weak coarse subangular blocks; very firm, plastic, sticky; thick clay films and pinkish gray (7.5YR 6/2) and light gray (10YR 7/2) lime coatings on pressure faces (slickensides); few fine pebbles; strong effervescence; clear irregular boundary.

*This pedon is a taxadjunct to the Hibbing series because it has tongues of bleached material invading the top of the subsoil clay accumulation.

Remarks: Few stones and pebbles occur throughout the profile. Sand content of B and C horizons was estimated at 15 percent.

Soil temperatures: Depth

(inches)	Temperature
20	15° C.
20	14° c.
40	13° C.

SUIL NO - - - - - S68WI-8-1

COUNTY - - - CALUMET

GENERAL METHODS- - -14,1818,241,28

SAMPLE NOS. 68L1066-68L1072

DEPTH	HORIZON	{															
CM		SAND 2- -05	SILT -05- -002	CLAY		vcos	CORS 1- -5	MEDS -5- -25	FNES -25- -10 LT 2M	VFNS -10-		FNS I . 02 . 002	TEXT SAND 21	INTR II .2- .02	FINE CLAY TJ CLAY PCT	NDN- CD3- CLAY PCT	8D1 15- BAR TO CLAY
000-20	AP	27.5	55.4	17.1	7.9	1.3	2.6	4.6	10.6	8.2	29.3	26.1	 19.3	43.3	46	17	.43
020-36	158	26.5	49.7	23.8		.7	2.5	4.8	11.0		27.0		19.0	40.4		24	.40
036-51	83T	53.5	32.6	13.9		2.3	4.5	7.3	25.8	13.6	18.7	13.9	39.9	48.3		14	.38
051-81	Cl	58.6	33.4	7.8		4.0	5.1	7.8	26.4	15.5	19.9	13.5	43.3	52.1		6	-36
081-104	C2	59.7	32.6	7.7	2.6	8.0	9.3	8.3	21.3	12.8	17.3	15.3	46.9	42.9	34	8	+40
- 104-135	C3	49.4	41.8	8.8		4.0	5.7	5.9	19.8	14.0	22.6	19.2	35.4	49.0		9	.36

DEPTH	(PARTI	CLE S	IZE ANA	LYSIS	, MM,	38, 381	382) (BU	LK DEN	SITY)(WAT	ER CO	ITENT-) CARBI	DNATE	(PF	
		_	• •											4C1				8C1A	
	ĢŤ	GT 75	75-20	20-5	5-2	LT			OVEN DRY	COLE	L/LO BAR	1/5- 6AR		HRD CM/		LT 2	LT .032	1/1	1/2
CM	2 PCT	PCT	{	PCT)		G/CC	G/CC		PCT	PCT	BAR PCT	EM		PÇT	PST		CAC
000-20	 5	0	5	TR	TR	75		1.57					7.4	.20		3 2 27 44 51	0		6.0
020-36	5	0		TR		75		1.52		.026		21.6	9.5	-18		2	0		7.
036-51	15	10	10	5	5	45 35 35		1.60A					5.3			27	0		7.:
051-81	25	5	10	15	5	35		1.72		-002			2.8	-10		44	0		7.
081-104		5	10	15	5	35	20	1.76	1.79	+004				+13		51	0		7.
104-135 135-163		5 5	10 10	20	5	35 40	26	1.80A	1.84	.006	12.8		3.2 3.8	•12		55 60	0		7.
		_ ,		_															
DEPTH (DRGANI	C MAT	TER)	IRUN	PHOS	(E)	TRAET	ABLE B	あうをう つ! 4074	54A	ACTY	ACIO				RAT 10	CA SF	1 BAS 6	5C1
	ORGN	NITE		EXT		CA							PAJA Eytê	NHAC	PHAC		SAT	EXTB	
	CARB	MILE		FE	1016	CA	ng	MA	•		TEA		ACTY		10	TO	NHAC		14117
C#	PCT	PCT		PCT					MEI	0 / 100	6)	CLAY	MG	PCT	PCT	
000-20	1.598	.14	7 11	101		10.4C	4.40	0.1	0.1	15.0				15.2	0-69	2.4			
	0.54	.05		106		11.4C 6.8C		0.1	A - 1	1/02				10.4	0.67	2.5			
036-51 051-81		•03	1 10	0.5		3.40	1.50	0.i	79	5.2				4.1	0.53	2.4			
061-104				0.4		2.70	1.40	ŏ.i	TR	4.2				3.4	0.44	1.9			
104-135				0.3		2.4C	1 . 3C	0.1	TR	3.8				3.1	0.35	1.8			
135-163				0.2		2.20	1.30	1.0	TR	3.6				2.8	0-27	1.7			
DEPTH			PASTE		NA			 /			SATUR	ATION	EXTRACI	841-					
DET IN	8E1				5E								ALIO					4F1	
		PH		ESP		TOTL			CA							534		LQID	PLST
	DHM-		•			SOLU		MMHQS/										LMIT	INDX
C#	CM		PCT	PCT									/ LITE						
000-20																		300 310	1
020-36																		310	1.
136-51																			
051-81	4300		28.5			70		0-30											
081-104 104-135	0200	, ,,,	40.7			,,,		V-27											
135-163																			

CLAY MINERALOGY (TAZC).

020-36 MIZ MVZ KKZ MT1.

COMMENTS - THE MONTMORILLOMITE-VERMICULITE MIXTURE CONTAINS SOME INTERLAYER MATERIAL. BY INFERENCE, A CONSIDERABLE AMORPHOUS COMPONENT IS PRESENT. CLAY MINERALOGY IS MIXED.

RELATIVE AMOUNTS - (X-RAY) 5 * DOMINANT 4 * ABUNDANT 3 * MODERATE 2 * SMALL 1 * TRACE.

MINERAL CODE - MT * MONTMORILLONITE MI - MICA KK * KADLINITE MY * MONTMORILLONITE-VERMICULITE.

(A) ESTIMATED.

(B) ORGANIC CARBON IS B KG PER SQ M TO A DEPTH OF 1 METER (METHOD 6A).

(C) METHODS 6N4C FOR CA AND 604C FOR MG.

(D) LL AND PI BY SOIL MECHANICS LAB. USDA-SCS. LINCOLN, NE.

Soil classification: Typic Argiudolls; fine-loamy, mixed, mesic.

Soil: Hochheim.

868WI-8-1 -Soil No.:

Calumet County, Wisconsin; SW4, SW4, Sec. 11, T. 17 N., R. 20 E.; 90 feet east of lot line and 900 feet Location: north of barn.

Climate: The climate is humid continental. Mean annual temperature is about 47° F; mean annual precipitation is approximately 30 inches; and frost-free season is about 135 days.

Vegetation and land use: Native vegetation was principally maple-basewood forest. Much of this soil is used for growing general farm crops.

Parent material: Highly calcareous light loam to sandy loam glacial till with very thin loess mantle.

Physiography: Gently sloping to steep sides of drumlins and glacial ground moraine.

Topography: Near the top of a large drumlin. Site is on a 10 percent convex slope with east aspect.

Drainage: Well drained.

Ground water: Deep.

Erosion: Slight to moderate.

Permeability: Moderate.

Described by: A. Klingelhoets, R. Fox, and E. Link, August 19, 1968.

(Colors are for moist conditions unless otherwise stated)

Ap 68L1066 0 to 20 cm (0 to 8 inches). Very dark grayish prown (1018 5/2) gritty sate 100m, 610, 1018 (1078 5/2) dry; weak coarse plates parting to moderate very fine subangular blocks; friable; roots common; stones 0 to 20 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) gritty silt loam, grayish brown 3/4 to 3 inches in diameter constitute 3 percent of the volume; moderately alkaline; abrupt smooth boundary.

B2t 68L1067 20 to 36 cm (8 to 14 inches). Dark yellowish brown (10YR 4/4) light clay loam; moderate medium and fine subangular blocky structure; hard when dry, slightly plastic when wet; thick patchy clay films with dark brown (7.5YR 3/2) colors; roots common; 3 percent of the volume is composed of rocks 3/4 to 3 inches in diameter; moderately alkaline; clear wavy boundary.

B3t 68L1068 36 to 51 cm (14 to 20 inches). Dark yellowish blocky structure; firm when moist; few thin patchy clay (10YR 5/4) loam; weak medium and moderate fine subangular blocky structure; firm when moist; few thin patchy clay 36 to 51 cm (14 to 20 inches). Dark yellowish brown (10YR 4/4) with inclusions of yellowish brown films; many partly weathered dolomite rocks and pebbles; 6 percent of volume is composed of rocks 3/4 to 3 inches in dismeter and 5 percent of rocks over 3 inches in dismeter; roots common; moderately alkaline with areas that contain free carbonates; gradual irregular boundary.

Cl 68L1069 51 to 81 cm (20 to 32 inches). Yellowish brown (10YR 5/4) light loam or sandy loam; weak medium fragmental blocks; friable; few roots; 6 percent of volume is composed of rocks 3/4 to 3 inches in diameter and 5 percant of rocks over 3 inches in diameter; 90 percent of the rocks are dolomite; strong effervescence; gradual wavy boundary.

C2 68L1070 81 to 104 cm (32 to 41 inches). Characteristics are the same as horizon above, except for the presence of a few fine flecks of secondary carbonates.

C3 68L1071 104 to 135 cm (41 to 53 inches). Light yellowish brown (10YR 5/4) light loam; weak medium fragmental blocks; friable; few fine faint mottles of yellowish brown and dark yellowish brown (10YR 5/6 and 4/4); 6 percent of volume is composed of rocks 3/4 to 3 inches in diameter and 5 percent of rocks over 3 inches in diameter; 90 percent of the rocks are dolomite; strong effervescence; gradual wavy boundary.

C4 68L1072 135 to 163 cm (53 to 64 inches). Pale brown (10YR 6/3) light losm; weak fine fragmental structure; friable; 6 percent of volume is composed of rocks 3/4 to 3 inches in diameter and 5 percent of rocks over 3 inches in diameter; 90 percent of rocks are dolomite; strong effervescence.

Remarks: Soil nearly dry in solum and moist in substratum when sampled. The glacial till appears to have a very high carbonate content. Approximately 80 percent of the pebbies and rocks in the till are dolomite.

Soil temperature: At 10 inches - 23° C. 20 inches - 21° C. 40 inches - 18.5° C.

U. S. DEPARTMENT OF AGRICULTURE SDIL CONSERVATION SERVICE MRTSC SOIL SURVEY INVESTIGATIONS UNIT LINCOLN, NEBRASKA

\$01L NO - - - - - 568WI-8-2

COUNTY - - - CALUMET

GENERAL METHODS- - -1A,1818,2A1,28

SAMPLE NOS. 68L1073-68L1079

DEPTH	HOR 1	ZON	{				· I	PARTICE	E 512	ANALY	SIS, L	T ZMM.	3Al.	3AlA,	3ALB -				RATI
						FINE	(SAND -		1	(SILT-)	FAML	INTR	FINE	NON-	8D1
			SAND	SILT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VFNS	COSI	FNSI	VFSI	TEXT	11	CLAY	C 33-	15-
			2-	.05-	ì.T	LT	2-	1-	.5-	.25-	-10-	• 05	•02	.005-	- SAND	•2-	TO	CLAY	BAR
				-002				•5	. 25	.10		-02		- 002			CLAY		TΟ
CM			(· <u>-</u> -		· <u>-</u> -	+ -	~ PC1	LT 2H	M)	PCT	PCT	CL AY
000-10	AP		38.0	44.6	17.4		3.9	6.1	6.2	13.8		17.5			30.0	33.0		17	.52
010-18	A3		38.2				4.8	6.9	6.1	12.7		17.4			30.5	32.1 29.9 43.6		18	. 43
018-38	82T		33.4	34.1	32.5		3.2	4.1	5.0	12.9	8.2	14.0	20.1		25.2	29.9 43.6 42.0 43.8		33	. 34
038-56	831		46.6				3.6	4.7	5.8		13.3		16.2		33.3	43.6		19	. 34
056-84	Cl		47.4				5.5	5.9	6.2	17.7	12.1	19.4	18.6		35.3	42.0		15 12	. 38
084-119			45.3				4.0	4.5	5.7	18.0	13.1	19.8	20.6		32.2	43.8		12	. 37
119-152	Ç3		46.2	39.4	14.4		5.3	5.4	5.9	17.2	12.4	19.0	20.4		33.8	41.7		9	.38
DEPTH						20. 201													
DEFIN												4B1C		4C1		6E18	341 A	8C1A	8616
	GT	GT				LT		1/3-	OVEN			1/3-						1/1	1/2
	2	75	13 20	20 3			PCT		DSA		BAR	BAR	BAR	C M/		2	-002		CAC.
CM			(PCT I	.t 75	3	LT20	G/CC			PCT	PCT	PCT			LT 2 PCT			
000-10	2	0	0	2	1	64		1.21	1.35	.036			9.0	.19		1 1R 11	0	7.3	6.6
010-18	TR			TR '	TR	65		1.304					7.6			TR	Ö		6+]
D18-38	5			5	TR	65		1.50	1.68	.037		19.0	11.2	.11		11	_0	7.6	7.1
038-56	20	5	10		5	45		1.60A					6.4			41			7-3
056-84	30	15			10	40		1.77	1.83	800. 800.		11.4	5-6	- 07		50			7+3
084-119		10			5	45		1.86					5.3				2		7.4
119-152	20	5	5	15	5	45	21	1.86	1.98	.017		10.9	5.5	.08		56	5	8-4	7.6
DEPTH (760)									AL				RATIO	CA	(BASE	SAT
DEF 16 11	6AIA		C/N	6024	6514	6NZE	6020	6P2A	602A		AIHA	6G1D			8D1	8D3	5F	5C3	5C1
	ORGN			EXT		CA			K		BACL	KCI		NHAC	NHAC	CA	SAT	EXTB	NHAD
	CADR			EE.		-	,,,				TEA		ACTY		TO	TO	NHAC	ACTY	
CM	PCT			PCT		(PÇT	PCT	
000-10						11.7C			0.1	16.3				20.2	1.16	2.7			
010-18				1.2		10.10	3 - 4C	0.1	0.1	13.7				14.7	0.83	3.0			
018-38	0.80			1.5		12.20		0.1	0.3	17.9				17.7	0.54	2+3			
038-56				0.6		6.6C	2.9C	0.1	0.2	9.8				8.8	0.47	2+3			
056-84				0.4		3.90	2.1C	0.1	0.1	6.2				5.9	0.40	1.9			
084-119				0.4		3.5C	2.0C	0.1	0.1	5.7				5.0	0.35	1.8			
119-152								0- i						4 1	A 20	3.7			

⁽A) ESTIMATED.

(B) ORGANIC CARBON IS 10 KG PER SQ M TO A DEPTH DF 1 METER (METHOD 6A).

(C) METHODS 6N4C FOR CA AND 604C FOR MG.

Soil classification: Typic Argiudolls; fine-loamy, mixed, mesic.

Soil: Hochheim.

Soil No.: S68WI-8-2-

Secretary County Discount Wiscount New Nutr Son 7 T 17 N R. 70.8 . 120 feet south of the road and 40 feet

east of fence line.

Climate: The climate is humid continental. Mean annual temperature is about 47° F; mean annual precipitation is

approximately 30 inches; and frost-free season is about 135 days.

Vegetation and land use: Native vegetation was primarily maple-basswood forest. Much of this soil is used for growing general farm crops.

Parent material: Highly calcareous light loam glacial till with a very thin loss mantle. Physiography: Gently sloping to steep side slopes of drumlins and glacial ground moraine.

Topography: Near the top of a large drumlin. Site is on an 8 percent convex slope with a southwest aspect.

Drainage: Well drained.

Ground water: Deep.

Erosion: Slight.

Permeability: Moderate.

Described by: R. Fox and E. Link, Aug. 19, 1968

(Colors are for moist soil unless otherwise noted)

Ap 68L1073 0 to 10 cm (0 to 4 inches). Very dark grayish brown (10YR 3/2) silt loam, grayish brown (10YR 5/2) dry; moderate fine granular structure; friable; roots common; moderately alkaline; abrupt smooth boundary.

A3 68L1074 10 to 18 cm (4 to 7 inches). Dark brown (10YR 3/3) silt loam, dark grayish brown (10YR 4/2) dry; moderate fine granular structure; friable; evidence of an A2 exists in pockets near the lower boundary with dark grayish brown (10YR 4/2) colors and moderate medium platy structure; roots common; about 1 percent of volume composed of gravel 3/4 to 3 inches in diameter; moderately alkaline; clear wavy boundary.

B2t 68L1075 18 to 38 cm (7 to 15 inches). Dark brown (7.5YR 4/4) clay loam, reddish brown (5YR 4/3) dry; moderate fine subangular blocky structure; slightly plastic when wet and hard when dry; thick patchy clay films with dark brown (7.5YR 4/2) colors; roots common; approximately 3 percent of volume composed of gravel, 3/4 to 3 inches in diameter; moderately alkaline; gradual wavy boundary.

B3t 68L1076 38 to 56 cm (15 to 22 inches). Dark brown (7.5YR 4/4) loam, dark brown (7.5YR 4/2) crushed; weak fine subangular blocky structure; friable; roots common; few thin patchy clay films; approximately 8 percent of volume composed of stones 3/4 to 3 inches in diameter and 5 percent of stones over 3 inches in diameter; moderately alkaline with free carbonates in the lower part; gradual irregular boundary.

Cl 68L1077 56 to 84 cm (22 to 33 inches). Brown (7.5YR 5/4) losm; weak fine fragmental blocks; friable; few roots; 5 percent of volume composed of stones 3/4 to 3 inches in diameter and 10 percent of stones over 3 inches in diameter; 80 percent of stones are dolomite; strong effervescence; gradual wavy boundary.

C2 68L1078 84 to 119 cm (33 to 47 inches). Characteristics are the same as for horizon above except for some evidence of weak coarse platy structure along with the fragmental blocks and 3 percent of volume being composed of stones 3/4 to 3 inches in diameter and 6 percent of stones over 3 inches in diameter.

C3 68L1079 119 to 152 cm (47 to 60 inches). Yellowish brown (10YR 5/4) light loam; weak coarse plates perting to weak fine fragmental blocks; friable; few scattered roots; 3 percent of volume composed of stones 3/4 to 3 inches in diameter and 4 percent of volume of stones over 3 inches in diameter; strong effervescence.

Remarks: Soil nearly dry in solum but moist in substratum when sampled. The glacial till appears to have a very high carbonate content. Most of the pebbles and stones are of dolomite (astimated 80 percent). Evidence of an A2 horizon occurs in scattered areas but this is destroyed after a few cultivations.

Soil temperature: At 10 inches - 19° C. 20 inches - 17.5° C.

40 inches - 16.5° C.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLM, MEDRASKA

SOIL NO - - - - - S7491-25-1 COUNTY - - - DAME

gewer al					•					. 74L14		_							
DEPTH								PARTICI	LE SIZ	BANALI	SIS. 1	AT 288,	311.	3414.	3 A 1 B)	RATI
			CAND	eri n	CTAV	FINE	TC00		SARD .)	(SILT-	TO ET)	INTR II	PINE	NON-	8D1
			2-	-05-	7.77	7.0	700	1-	.5-	. 25-	10-	- 05	.02	.005	- 3±mr	.2-	TO	CLAY	P3 P
				.002	.002	.0002	: ī	. 5	.25	.10	.05	.02	.002	.002	. 10	02	CLAY		TO
CB			(- PC:	r LT 21	M						PCT	PCT	CLAY
000-25	OAF		,																
033-43 043-109																			
109-152			5.7	66.1	28-2		TR	TR	.5	2.4	2.8	24.2	41.9		2.9				3. 29
							_												
DEPTH	40 1 DE T	A1 11 61				20 20	202							and to water			24 x m m	/ ne	
	YOL.	(·	- BE	Get) 4110	4718	4D1	ABIC	4B1C	4 B2 A	4C1		6E 1B	3212	8C1A	8C 11
	GT	GI	75-2	0 20-5	5+2	LT	20-2	1/3-	CARR	COTR	1/10	1/3-	15-	WED		P.E.	PI.	1/1	7/2
CH	PCT	PCT	(- PCT 1	T 75)	L#20	6/CC	G/CC		PCT	PCT	PCT	CH		6E 1B LT 2 PCT	PCT	n20	CACI
000-25			0		TR		TR	.18					81			++		6.7	6.3
033-43	ŤR		ŏ	ŏ	TR		ŤŘ	.21	.78		472	388	113	.58					6.2
043-109		ŏ	ŏ	õ			TR	.19			527	388	122	.51				6.3	
109-152	2 0	0	0	0	0	96	0						102					6.0	5.6
DEPTH (RATIO			SAT
DELLE (42 42 42 43	CHAIL	CAN	6C2B	raus	6 N 2 R	6020	ADER PA	6028	94AJ	6811	661E	5434			8D3			
		MITG	٠, ۵	EXT	TOTL	CA	26	#1	K	SUM	BACL	KCL	EXTB			CA.		EXTB	
	CYBB			FE						EXTS	TEA	BXT	ACTY			TO		ACTY	
CH		PCT				{ + 										NG.		PCT	PCT
000-25		2.94	10				39.1	.5	2.2	160	23.4		183	139		3.0	85	87 78	115
033-43 043-109		3, 67	, 13 , 11				43.8 48.5		.4 .5		47.4 50.0		212	167		2.7 2.7		78	112
109-152		2.9					38.8		ž.	142	65.8		207	121		2.6	84	68	117
DEPTH						SALT	GYP	(SATURI	TION !	BXTRAC	r 8a 1-)	ATTERI	BERG
		8¢1B			5B		671A			601B			CO3			6L 1A 504		LOID	
	rest ob H-	FA	B20	BSP	SAR	POTL SOLU		ec nabos/	CY	20	#A	ĸ	COS	ncos	CL	304	H()	LHIT	
CH	CH		PCT			PPH	PCT	CH	(~ - •			· HBQ /	/ LITE	R)	PCT	
000-25		6,5				9200		3.45			.8		0	.9		24,9			
033-43		6.0				6400				5.4	. 3	_ 1	Ō	. 6			4.5		
043-109			841			9200 6400 7200 7600		1,19	6.9	5.9	. 3	. 2	0	. 3	1.0	5.3	4.1		
109-152	950	5. 4	587			7600		1.67	11.2	8.9	. 2	TR	0	. 3		16.8	2.5		
DEPTH						-HI STOS		ARACTE								~~~~			
	•	(STAT	E OF	DECO APO	S IT IO	3) PH	(BU	LK DEM	COL	s Subs	(WATER B 481	CONTE	NT 2 4C)				
	8F	/PT#1) PYRO		# .012		A 4A13 D 1/3i				1/31							
	COM			_sol111				T REST				C REES							
· –							_												
CA	PCI			(HTH:		R)		C 6/CC		PC?				r Ci					
000-25	44			10 Y				4 .32		1 7									
033-43	16			7. 511 7. 511					2 .15	5 84 9 84									
043-109 109-152					6.5/				73	, o.			9:		-				
103-134	. 34		• •	10 11			•	-		٠.		=		-					

		_	
	· · · · · · · · · · · · · · · · · · ·		
		<u> </u>	1
-			
			<u> </u>
			
-			
		T. Pro-	
		•	
	The same of the sa	1	4. 4
<u> </u>		_▲ .	
		,	
1x-1 - 11-4			
-			
<u> </u>			
1			
oil cleanification. Twoir Mediasori			

۲ ___

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, MEDRASKA

SOXL NO - - - - - S74WI-55-2

COUNTY - - - JEFFERSON

GENERAL BETHODS- - -14,1818,241,28

SAMPLE BOS. 7411483-7411488

SEBERYL	BETHU	DS	-14,11	B 1 0, 4 A	1,28			34 BF	LE BOS.	741 14	03-741	. 1400							
DEPTH	HOR I	ZOF	(LE SIZE	AWALY	SIS, 1	T 288		3212,	31 1B)	
						FIRE	(SAND -		· + -)	(-SILT-	:		ITR	PINE	MOR-	8D1
			\$A MD 2→	.05-		CLAT	V COS	CORS	.5-	FNES	VFNS	COST	PRSI	VPSI	- 5AND	. 2-	TO	CLAY	
						.0002	- 1-	, <u> </u>	.25	- 10	-05	-02	.002	-002		- 62			TO
CH									- PCT	LT 28	世	+	+		÷		PCT	PCT	CLAT
00-28	OAP		3.5	71.2			.1	. 1	.2	.8	2.3	23.7	47.5		1.2				3.8
28-62	012																		
62-84	013																		
84-109	024																		
09-127 27-183	015 016																		
BPTB ((PARTI: VOL.	CLBS:	ISB WAY	ALYSIS We:	, AH, IGHT -	3B, 3B1	, 3B2) 	(BU) 4110	LK DENS 4278	ITY) 401	(481C	- FRE 4 B 1C	er coi 4B2A	TERT-		CARBO 621B	STANO Alae	(PF 801A	8C 1
	GT	GT	75+20	0 20∽5	5-2	LT	20-2	1/3-	OVEN	COLE	1/10	1/3-	15+	WED		LT	LT	1/1	1/2
	2	75				.074	PCT	BAR	DKI		BYR	BAR	BAR					H20	CAC
CB	PCT	PCT	(PCT	LT 75)			G/CC		PCT	PCT	PCT			PCT			
00-28		0	0	0	TR	98	TR						103					5.7	5.5
28-62		0	Ŏ	0	Ŏ		0	.21	.89 .61		459 573	37 1 447	112 111	.54 .57				5.7 5.7	5.4 5.4
162-84 184-109	0	ŏ	Ň	V	0		ŏ		.50		571	4 18	110	.49				5.6	5.1
09-127	_	ŏ	ŏ	0	70		TR	.20	.96		551	398	113	.57				5.2	5.
27-183		. Ŏ	ō	Ŏ	TR		TR		1.11		576	435	105	.66				4.9	4.
BPTH (C			C/N		PHOS				13 £3 ⊃8 6Q2B							RATIO 8D3		SC3	5 SAT) 5 C 1
	ORGH	NITG	•	EXT	TOTL	CA	AG	RY	K	Sur	BACL	KCL	BITE	BEAC	NHAC	CA	S AT	EXTB	MHA
	CARB			FE						EXTB		EXT	ACTY		TO	TO		ACTY	
CE	PCT	PCT		PCT	PCT	(+											PCT	PCT	PCT
000-28	36.5	3.60				110	27.4	.1	1.1	139	72.8		211	149		4.0	74	66	9:
28-62		3.00				119	36.5	.2	.5	756	97.4		254	163		3.3			10:
062-84		2.83				121	38.5	٠,	• • 5	150	77 0		230	110		3.1 3.2		59	91
084-109 109-127		2. 6				83.8 56.0	40.0	.3		75.6	99 6		175	83 A		3.0		43	9
127-183		3.2° 2.9				56.0 61.2	29.5	.3	- 3	91.2	178		269	75.1		2,1		34	12
		_	=			_													
BPTE	(SA TUR			BA	Pà	SALT	GYP	(+	SATUR	TION	EXTRAC!	81 1-)		
	821		87	5 D2	5E		6711		6 H 1 B									471	
	REST	PB	B20	BSP .	SAR	TOTL			CA	EG	MY	ĸ	(03	HCO 3	CT.	504	BO3	TRIT	
CE	OH H-		PCT	PCT		PPH PPH	PCT	####05/ C#	(. +	. +	- REQ	/ LITE	R)		1001
000-28	1000	5.2	410			4300 6100 5200 5900 24000 30000		1.59	9.7	5.8	. 1	.7	0 0	.3	. 2	2.0	12.7		
28-62		5.3				6100		1.25	7.8	5.3	. 1	. 2	0	. 3	.0	3.9	8.1		
62-84		5.3				5200		.76	4.9	3.3	. 1	. 1	0	. 9	. 2	4.2	2.4		
84-109			9 68			5900		.88	5.5	3.8	. 1	- 1	0	. 9	.0	5.4	2.3		
109-127	570					24000		3.13		15.1	. 2	• 1	0	.0	, 5	44.2	1.6		
127-183	250	2.3	809			30000		6.17		33.8	. 2	.1	0	.0	2.5	102	.4		
BPTH						-EI STOS									<i></i> -		**		
	-		TE OF	DECOMP	OS IT 10	H4 (K	(80	LK DEM	COLE	SUBS	; (-6 at er	CONTE	PT	}				
	8 P		8G		8B			4 4 4 1				4 4B1							
	MINL	(FIB:	ER VOL	PYRO	REO SPE	T .018	PIL	B 1/3	B RB-	RES-	· FIL	D 1/3	B 15						
	CURA		EL PILE							Thur			T RA	R ON					

CH PCT PCT PCT (HUNS COLOR) G/CC G/CC PCT PCT PCT PCT CH	
000-28	

Soil classification: Typic Mediaaprists; euic, mesic.

Series: Houghton.

Pedon No.: S74WI-55-2.

Location: Jefferson County, Wiaconain; NW4, SW4, sec. 27, T. 7 N., R. 16 E., 576 feet north from center of road opposite farmhouse. About 43 07' N latitude and 88 37' W longitude.

Climate: Humid continental. Mean annual temperature is 47.8 F; mean July temperature is 73.1 F; mean January temperature is 21.3 F; mean annual precipitation is 30.98 inches with nearly two-thirds of the precipitation falling during the growing season; total amount of snowfall is

41.9 inches; the growing season averages 159 days, but less in organic areas (data from

Watertown, WI weather bureau aubstation).

Parent material: Deposits of herbaceous organic material more than 51 inches thick.

Physiography: Depressional area between drumlins.

Vegetation: Bluegrass sod (cut and sold as sod).

Size of area: About 2,000-3,000 acres interfingering between drumlins.

Distance to adjacent mineral soil: About 572 feet to south.

Depth to water table: 109 cm.

Microrelief: None

Subsidence: Estimated to be moderate.

Described and sampled by: G.W. Hudelson and C.L. Glocker. Sampled from pit to 72 inches.

<u>0 to 28 cm</u>. Black (N 2/0), black(10YR 2/1) rubbed and pressed sapric material; 60 percent fiber, less than 2 percent rubbed; weak fine granular structure; very friable; fibers primarily herbaceous; about 10 percent mineral soil material; pH 6.0 (LaMotte); abrupt smooth boundary.

74L1484 28 to 62 cm. Very dark brown (10YR 2/2), black (10YR 2/1) rubbed, very dark brown (10YR 2/2) pressed sapric material; 88 percent fiber, less than 2 percent rubbed; weak coarse prismatic structure parting to weak medium subangular blocky structure; very friable; fibers primarily herbaceous; about 10-15 percent mineral soil material; pH 6.2 (LaMotta); clear smooth boundary.

Oa3 74L1485 62 to 84 cm. Very dark brown (10YR 2/2), black (10YR 2/1) rubbed, very dark brown (10YR 2/2) pressed sapric material; 68 percent fiber, 4 percent rubbed; weak thin platy structure with some areas of massive (matted); very friable; fibers primarily herbaceous; about 10-15 percent mineral soil material; pH 6.2 (LaMotte); abrupt smooth boundary.

Oa4 74L1486 84 to 109 cm. Black (101k 2/1) proken race, rubbed; and present supported the percent rubbed; massive (matted); very friable; fibers primarily herbaceous; about 10-15 never minoral and materials and a first supported to the support minoral and supported to the support minoral and supported to the supported to the support minoral and supported to the support minoral and supported to the support minoral and supported to the supported to the support minoral and supported to the support minoral and supported to the support minoral and supported to the supported to the support minoral and supported to the support minoral and supported to the support minoral and supported to the supported to the support minoral and supported to the support minoral and supported to the support minoral and supported to the supported to the support minoral and supported to the support minoral and supported to the support minoral and supported to the supported to the supported to the support minoral and supported to the support minoral and supported to the supported to the support minoral and supported to the support minoral and supported to the supported to 74L1486 84 to 109 cm. Black (10YR 2/1) broken face, rubbed, and pressed sapric material;

Oa5 74L1487 109 to 127 cm. Very dark grayish brown (10YR 3/2), very dark grayish brown (10YR 3/2), very dark gray (10YR 3/1) rubbed and pressed sapric material; about 25-30 percent fiber, less than 5 percent rubbed; massive with a few areas of weak thin platy structure; very friable; fibers primarily herbaceous; about 15 percent mineral soil material; pH 6.8 (LaMotte); gradual wavy boundary.

127 to 183 cm. Very dark gray (10YR 3/1) broken face, rubbed, and pressed sapric material; about 15-20 percent fiber, less than 5 percent rubbed; weak thin platy structure; very friable; fibers primarily herbaceous; about 15 percent mineral soil material; pH 6.8 (LaMotte).

Remarks:

- 127-183 cm sedge roots and leaves (easily identifiable).
- 109-127 cm sedge roots, leaves, seeds, 1 wood fragment (easily identifiable).
- 0-28 cm some weak medium angular blocky structure (compaction by machinery).
- 28-62 cm sedge roots, leaves, and seeds are evident on broken face. Some tendency towards prismatic structure.
- 62-84 cm sedge roots evident on broken faces.
- 6. Water moves into pit down through vertical cracks. Some places in field have polygonal cracks at surface.
- 109 cm is a soak line (wet); color change in material also.
- Sand underlies organic material at 183 cm.
- 9. High percent of fibers (unrubbed) in this profile.
- Sodium Pyrophosphate color test produced colors of: Oap-10YR 3/3; Oa2 10YR 3/3; Oa3 10YR 7/3; 0a4 - 10YR 7/3; 0a5 - 10YR 8/1; 0a6 - 10YR 8/1.

B21HIR

SOIL NO)	- S72W	I-21 - 9		COUNTY		FORES	T					1.	LBCOLM	, 6000	# DV W		
Jenera I	L METHCDS-	13,11	B1B,2A	1.28			SAMPL	E NOS.	72L8	78-72L	385							
DEPTH	HORIZON	(·	SILT	CLAY	PIRE	1 (7 ▼C05	CORS	E SIZE Sand ~ Meds	PNES	(SIS.)) VFNS	LT 266, (, 3&1, -SILT- PNSI	JA 1A,	3A 1B ·) 5AND	INTE	PINE CLAY	NON- CO3-	RATI
CM								- PCI	LT 2	M						PCT	PCT	CLAY
000-12 012-21 021-52 052-64 064-82 082-140 140-200 200-225) B2T	57.4 56.9 62.1 79.2 81.0 79.2 74.2	37.8 33.6 32.0 17.6 16.5 17.6 15.7	4.8 9.5 5.9 3.2 2.5 3.2 10.1	.9 .1 .3 .2 .1 3.0	3.5 3.8 6.3 5.7 7.2 6.3	11.4	15.2 17.1 21.5 23.0 22.4 21.0	18.6 19.6 20.7 25.7 26.6 24.2 21.7	8.0 8.8 9.1 10.6 10.5 9.2 8.9	16.1 14.2 14.3 8.9 8.2 8.1	21.7 19.4 17.7 8.7 8.3 9.5		49.4 48.1 53.0 68.6 70.5 70.0 65.3		31 9 2 9 8 3		. 7' . 86 . 9' . 7' . 66 . 4' . 30
CE CE	(PARTICLE VOL. (GT GT 2 75 PCT PCT	75-20	WE: 0 20-5 - PCT :	IGHT - 5-2 LT 75	LT .074	20-2 PCT LT20	4A1D 1/3- BAE	4 A 1 H OVEN DRY G/CC	COLE	4B1C 1/10 BAR PCT	4 B 1C 1/3- 8 A R PCT	4B2 15- BAR PCT	WRD CH/ CH		6E1B LT 2 PCT	3A1A LT .002 PCT	8C1A 1/1 H2O	8C 11 1/2 CACI
000-12 012-21 021-52 052-64 064-82 082-14 014 0-20 200-225	10 TE 10 TE 10 TE 30 5 35 5 35 5 35 5	5 5 5 20 25 25 25	7	4 5	40 40 34 17 15 15 18 17	12 13 16 23 19 21	1.0 A 1.2 A 7.20 1.6 A 1.9 A 1.91 1.9 A	1.26	. 0 15	34.5		3.7 8.2 5.7 2.5 1.7	. 22		B B		4.7 4.6 4.8 4.8 6.0 6.1	4.2 4.4 4.5 5.2
CM	ORGANIC MA 6A1A 621 ORGN NIT CARB PCT PCT	A C/N	6C2B EXT FE PCT	TOTL PCT	6 M2 E CA (~	602D MG	6P2B	602B K Meg	SUM EXTB	6H1A BACL TEA G-	6G TE KCL EXT	5A3A BXTB ACTY	5161 Whac	8D1 NHAC TC CLAY	RATIC 8D3 CA TO NG	SAT NHAC PCT	(BAS1 5C3 EXTB ACTY PCT	B SAT) SC1 NBAC PCT
000-12 012-21 021-52 052-64 064-82 082-14 0140-20 200-225	.04	81 12 22 15 83 19	. 5		2.3 1.2 .6 .2 .1 .6 3.6 2.8	.7 .4 .1	.0 TR .1 TR	.1 .1	3.1 1.7 .9 .2 .2	5.2 22.6 16.7 5.8 4.3	.4 3.5	8.3 24.3 17.6 6.0	7,1 15.3 10.2 3.8	1.48 1.61 1.73 1.19 1.24	3.3 3.0 6.0	32 8 6 5 3 23 62	37 7 5 3 4	\$6 1: ! !
DEPTH	(SATURATE) 8E1 8C1E REST PH OHE- CH	PASTE)	N <u>a</u>	NA 52 SAR	SALT 8D5 TOTL SOLU PPE	GYP 6P1A	8A1A EC HHBOS/ CH (6 11 B	601B NG	SATURI 6P1B NA	HOITA 6Q1B K	BITRAC: 611A CO3	F 811- 6311 HC03	6K1A CL	61 1A S04	6M 1A NO 3	AF1 LQID LHIT	BERG 4P2 PLST INDX
000-12 012-21 021-52 052-64 064-82 082-14 140-20 200-22		0 13.8	<u> </u>				-20							_ 				
ID BUT I	FICATION OF	THE SP	ODIC R	ORIZON	BY LAI	BORATO	RY CRIT	ERIA.									+	
		(PIROP																

⁹⁵ 225 26 33 .63 .53 .38 012-21 021-52 052-64 .8 .4 1,5 1,1 .6 .4 .13 .14 .09 B22IR B23IR B24IRE ESTINATED.
HICRO-PERETRATION RESISTANCE. A ROD 0.6 CR DIA IS SLOWLY PUSHED INTO BULK DEBSITY CLOD, EQUILIBRATED AT 0.1-BAR, A
PISTANCE OF 0.6 CM USING A POCKET PENETROBETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCOMPINED COMPRESSIVE
STRENGTH. (A) (B)

Soil classification: Typic Entroboralf; coarse-loamy, mixed.

Soil: Iron River taxadjunct*.

(LSL Nos. 72L878-72L885). Soil No.: 872 WI-21-9

Location: Forest County, Wisconsin; SWs, NWs, Sec. 32, T. 38 N., R. 12 E.
Climate: Humid continental; mean annual temperature is about 37° to 43° F; sverage annual precipitation is about

30 inches; and frost-free season is 90 to 120 days.

Vegetation and land use: Matural vegetation was mixed northern hardwoods and conifers. Most of this soil is in second growth hardwoods and aspen. Some areas have been cleared and are used for general

farming. Some wooded areas are pastured. Parent material: Acid sandy loam glacial till.

Physiography: Gently sloping to steep glacial ground and recessional moraines.

Tonography: Size is on a plane 2 percent alone in a hardwood-conifer forest.

T. 72.7

Ground water: Deep.

Erosion: Slight.

Permeability: Moderate except for the fragipan which is moderately slow.

Described by: Steve Payne and Robert Fox.

Robert H. Jordan and Robert L. Juve, September 20, 1972. Sampled by:

(Colors are for moist soils unless otherwise stated)

01 Partially decomposed leaves and new leaves from the forest cover.

6 to 0 cm (2 to 0 inches). Very dark brown (10YR 2/2) decomposed leaves; weak fine granular structure; very

A2 72L878 0 to 12 cm (0 to 5 inches). Dark reddish brown (5YR 4/2) fine sandy losm; weak fine granular structure; very friable; few fine gravel; roots common; very strongly acid; abrupt boundary.

B21hir 721879 12 to 21 cm (5 to 8 inches). Dark reddish brown (2.5YR 3/4) fine sandy loam; weak medium subangular blocky structure; very friable; few roots; strongly acid; clear boundary.

822ir 72L880 21 to 52 cm (8 to 21 inches). Dark red (2.5YR 3/6) fine sandy loam; moderate medium subangular blocky structure; very friable; few roots; very strongly acid; clear boundary.

721881 52 to 64 cm (21 to 25 inches). Reddish brown (5YR 4/4) sandy loam; moderate medium subangular blocky structure; frieble; a few brittle peds; about 20 percent by volume of medium and coarse gravel and about 10 percent of fine gravel and 5 percent cobblestones; very strongly acid; abrupt boundary.

B24irx 72L882 64 to 82 cm (25 to 33 inches). Brown (7.5YR 4/4) loamy sand; weak medium subangular blocky structure; firm; a few pads of brittle firm sandy loam which are more firm than the A&B horizon below; about 20 percent of medium and coarse gravel and 10 percent of fine gravel, and about 5 percent cobblestones; strongly acid; clear boundary.

x 721883 82 to 140 cm (33 to 56 inches). Brown (7.5YR 5/4) loamy sand and reddish brown (5YR 4/3) sandy loam; loam; sand is structureless and loose, and the sandy loam has a weak medium subangular blocky structure; the sandy losm is brittle and weakly cemented; about 20 percent medium and coarse gravel and 10 percent fine gravel, about 5 percent cobblestones; medium acid; abrupt boundary.

R2t 72L884 140 to 200 cm (56 to 80 inches). Reddish brown (2.5YR 4/4) sandy losm; moderate medium subangular blocky structure; friebla; many clay films and clay bridges; about 20 percent medium and fine gravel and 5 percent cobblestones; slightly brittle and weakly cemented; medium acid; clear boundary.

B3t 72L885 200 to 225 cm (80 to 90 inches). Reddish brown (2.5YR 4/4) sandy loam; weak medium subangular blocky structure; frieble; a few clay films and some clay bridging; slightly acid; clear boundary.

C 225 to 250 cm (90 to 100 inches). Raddish brown (5YR 4/3) sandy loam; massive; friable; about 20 percent gravel.

Remarks: Sols is thicker than typical and appears to have been developed in coarser till overlying Gogebic till starting at 140 cm.

This pedon lacks a well expressed fragipan with spodic characteristics; therefore, it is a taxadjunct to the Iron River series,

Ł

849WI-4	.J			Be	!tevil	De So	i) Surv	rev Lai	b. Nos	. 4999	77- 49:	1003			•		•	
Donah			M.E.	/100 G	rams So:	[]		4.5	,				s	ize Cl	8.88es	*		
Depth cm	Horizon	Ca	Mg	ĸ	Na	Hl	_{S+} 2	% B. SAT	рH	∌ o.c.	Clay	1113	USDA Silt		FS	MS	cs	VCS
2.5.0	оı	_	_						4.4			-			_		-	
0-20	A2	0.7	0.2	0.1	<0.1	2.2	3.2	31	4.8	0.51	2.4	10.5	20.5	9.1	33.4*	23.0	10.2	1.4
20-33	B21hir	0.6	0.3	0.2	0.1	12.2	13.4	9	5.1	0.97	6.0	8.6	18.0	10.0	35.2	21.5	8.1	1.2
33.68	B22irx	0.5	0.1	0.1	<0.1	4.1	4.8	14	5.7	0.33	3.8	3.6	9.5	13.7	41.1	21.6	8.7	1.6
48-103	7.0	0.2	0.1	0.1	<0.1	2.1	2.5	16	5,6	0.15	2.0	2,6	6.6	12.0	38.2	22.6	14.1	4.5
103-133	7701	0.3	0.1	0.1	<0.1	1.7	2.2	23	5.8	0.13	2.5	4.4	9.3	11.8	39.4	21.8	12.0	3.2
133.160	IIC2x	1.0	0.3	0.2	<0.1	1.3	2.8	54	6.0	0.08	4.5	11.1	20.0	13.7	34.0	17.2	8.5	2.1

¹ Acidity
2 CEC by sum of cations
3 International III - This is PSDA fine silt (.02-.002 mm).

Soil classification: Typic Fragiorthod; sandy, mixed, frigid.

Soil: Kalkaska variant.

Soil No.: 849WI-4-1.

Location: Bayfield County, Wis.; NWs, Sec. 2, T. 48 N., R. 7 W.; about 1/4 mile south of junction of earth road and

road to Lewanee lookout tower.

Climate: Humid continental; mean annual air temperature is about 39° to 45° F; average annual precipitation is 28 to

32 inches; frost-free season is 90 to 105 days.

Vegetation and land use: Largely in second growth timber of mixed deciduous and coniferous trees such as aspen, white birch, jack pine, and maple. Some cleared areas are used for pasture and forage production.

Parent material: Sandy acid glacial outwash over acid sandy loam till.

Physiography: Sloping to hilly upland.

Topography: On east-facing side slope of a ridge; gradient is 4 percent.

Drainage: Somewhat excessive to well drained.

Ground water: Deep.

Erosion: Slight.

Permeability: Rapid in solum; moderate in substratum.

Described by: J. K. Ableiter, I.J. Nygard, R.J. Muckenhirn, and V.J. Kilmer.

(Colors are for moist soil unless otherwise stated)

01 49997 2.5 to 0 cm (1 to 0 inches). Very dark brown (10YR 2/2) crushed, peaty organic matter, poorly decomposed; very friable; many fibrous roots, gray sand grains, bits of twigs, bark, leaves, and wood fragments; fungal mycelium and some gray particles present; constitutes a definite fairly strong mat on the surface.

A2 49998 0 to 20 cm (0 to 8 inches). Reddish gray (5YR 5/2) sand, pinkish gray (5YR 7/2) dry; weakly coherent subangular blocky structure parting to weak small granules; very frisble; many roots; abrupt irregular boundary; strongly acid.

B21hir 49999 20 to 33 cm (8 to 13 inches). Dark reddish brown to reddish brown (5YR 3/4 to 4/4) loamy sand, light reddish brown to light brown (5YR 6/4 to 7.5YR 6/4) dry; cemented ortstein in places which are angular, hard and difficult to fracture or crush; orterde is more yellowish brown, weakly cemented and crushes easily; roots penetrate this horizon vertically but are more extensive at top and bottom where they are horizontally extended; ortstein fragments are dark reddish brown on exterior and lighter brown on interior; irregular boundary with tongues extending into horizon below; medium acid.

B221rx 491000 33 to 68 cm (13 to 27 inches). Reddish brown (5YR 4/4) loamy sand, light reddish brown (5YR 6/4) dry; slightly cemented in place parting to subangular blocks which crush easily; few roots; roots are concentrated where the material is looser; irregular boundary with tongues extending into lower horizon; medium acid.

B3x 491001 68 to 103 cm (27 to 41 inches). Reddish brown (2.5YR 5/4) loamy sand, reddish brown to light reddish

			•
V -	71	as	~ 0

Bayfield County, Wisconsin

Depth	ŀ		М	.E./100	Grams S	Soil	,						S	ize Cl	2988£	*		
cm reber	Horizon	Ca	Mg	к	Na	HJ	s+ ²	% B. SAT	ρĦ	ø.c.	Clay	ııı 3	USDA Silt	VFS	PS	MS	cs	vcs
2.5-0	02		_						5.8							-	-	
0-17	A2	0.6	0.1	0.1	<0.1	1.3	2.1	38	4.8	0.44	1.9	4.5	6.8	2.6	27.6	29.8	26.3	5.0
17-40	B2hir	0.4	0.2	0.1	0.1	9.1	9.9	ីខ	5.9	0.81	5.9	3.2	4.4	3.2	36,7	27.9	16.3	5.6
40-53	B3ir	0.3	<0.1	0.1	0.1	3.9	4.4	11	5,4	0.35	2.6	1.0	0.9	2.1	43.2	31.5	15.6	4.1
53.85	В3	0.1	<0.1	<0.1	<0.1	1.4	1.5	7	6.0	0.14	1.5	0,0	0.6	5.0	60.6	24.5	6.4	1.4
85-128	Cl	0.2	<0.1	<0.1	0.1	1.3	1.6	. 19	6.0	0.13	1.6	0.0	0.1	3.9	46.3	21.8	19.8	6.5
28-160	C2	0.2	0.1	<0.1	0.1	1.0	1.4	28	5.8	0.07	1.7	0.7	6.9	13.2	36.5	32.2	8.3	1.2

1 Acidity 2 CEC by sum of cations 3 International III - This is PSDA fine silt (.02-.002 mm).

Soil "classification: Typic Haplorthod: sandy, mixed, frigid.

Soil: Kalkaska.

Soil No.: 849WI-4-2.

Location: Bayfield County, Wisconsin; NWk, NE's of Sec. 13, T. 50 N., R. 8 W.; 100 feet east of northwest to south-

east side road and 0.3 mile northeast of Port Wing.

Climate: Average annual precipitation is 28 to 32 inches. Mean annual air temperature is about 39° to 45° F.

Frost-free season is 90 to 105 days.

Vegetation and land use: Largely in second growth timber of mixed deciduous and coniferous trees such as aspen, white birch, jack pine, oak, and maple. Ground cover consists of grasses, forbs, ferns, blueberry, and mosses. Some cleared areas are used for pasture and forage production.

Parent material: Sandy acid glacial outwash. Physiography: Nearly level to steep uplands.

Topography: On north-facing side slope of high ridge.

Drainage: Somewhat excessive to well drained.

Ground water: Deep. Erosion: Slight. Permeability: Rapid.

Described by: J. K. Ableiter, I.J. Nygard, R.J. Muckenhirn, and V.J. Kilmer

(Colors are for moist soil unless otherwise stated)

01 Consists of 1/4 inch of birch, oak, and forb leaves.

O2 491004 2-1/2 to 0 cm (1 to 0 inches) Dark gray to very dark brown and black (10YR 4/1, 2/2 and 2/1) peaty organic matter with some sand grains; forms a strong mat which can be cut loose and handled in patches or strips; contains fine roots, mycelia, bits of charcoal and twigs; grades into a very thin (1/4 inch) A1.

A2 491005 0 to 17 cm (0 to 7 inches). Pinkish gray (5YR 6/2) loamy sand, pinkish gray (5YR 7/2) dry, and dark reddish gray (5YR 4/2) wet; very weakly coherent; very friable; numerous roots up to 1/2 inch in diameter; some mixing and gradation in patches or pockets with the B2hir horizon below; strongly acid; irregular boundary.

B2hir 491006 17 to 40 cm (7 to 16 inches). Yellowish red to reddish brown (5YR 4/6 to 4/4) laser sand. Hebt

very friable; spheres or zones of darker brown cemented ortstein about 2 to 6 inches in diameter occur and extend downward into the horizon below; these appear to be old root channels; common roots, mostly woody, 1/8 to 1/4 inch in diameter; few sandstone, granite and basalt pebbles; strongly acid.

B3ir 491007 40 to 53 cm (16 to 21 inches). Yellowish red (5YR 4/6) loamy sand, reddish brown (5YR 5/4) dry; weakly coherent with little tendency toward structure; very friable; many roots, generally woody and 1/8 to 1/4 inch in diameter; cylinders or tongues of cemented ortstein extend into this horizon from the B2hir horizon; a large rock, 18 inches in diameter extends through this horizon and into the one above; medium acid.

B3 491008 53 to 85 cm (21 to 34 inches). Yellowish red to reddish brown (5YR 4/6 to 4/4) sand, light reddish brown (5YR 6/4) dry; weakly coherent to single grained; very friable to loose; few roots, mostly vertical and

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - \$70WIS-71-5

COUNTY - - - WOOD

GENERAL METHODS+ - -1818,241,28 SAMPLE NOS. TOL952-70L959

,	CON	,					PARILU	FE 2151	E ANAL'	4212° i	. ZAM	, 3A I.	BALA.	SALU -			;	RATI
									+25-	* 10-							LLAY	TO
								PC								PET	PCT	
																		, , ,
																		.4
																		.4
																		.4.
																		. 4
																		.3
																		.3
	(A)	7443	2117	2740				***	, -···	****		1743	•••	2111	3012			• •
	15 5	17F AN													CARBI	ONATE	(PH	
		- .	- HE	IGHT -			1 4A10	4A1H	401	481C	481C	482	401		6E1B	3A1A	BC1A	8C 1
GT	GT	75-20	20-5	5-2	LT	20-2	1/3-	OVEN	COLE	1/10	1/3-				LT	LT	1/1	1/2
2	75				.074	PCT	BAR	DRY		BAR					2		H20	CAC
PCT																		
TR	0	TR	TR	1	62												7.1	7.
0	0	O	0	0	74	0	1.69	1.70	.00Z	19.4	17.7	7.3	.10	5.48	3		5.4	4.
0	0	0	0	0	27	0						2.5					4.6	4.
ΥR	0	0	0	TR	59	TR						9.8					4.1	3.
0	0	0	0	Q	35	0						4.5					4.4	3.
0	0	0	0	0	85	0						15.5					4.2	3.
0	G	0	0	0	60	0						9.3						3.
TR	0	TR	TŘ	TR		TR						6.1					7.0	7.
				PHOS														: SAT 5C1
		L/N		T011														NHA
	MILIE			FUIL	LA	MG	MA	κ.					MUNC					MUM
	DCT			DCT				wer										PCT
	PU!													, c.a.				
		9 13	0.7		12.6					2.8					25.0	126	83	13
		5 9	0.9															7
)	0.2															5
	.02	2	0.5															3
			0.1															4
			1.5															4
			0.3		1.5	2.4	0.2	0.5	4.0	9.9	1.5	9.0	7.4	0.31	0.6	20	21	6.
•										7								
						GYP	(SATURA	TION	EXTRAC	F 8A1-			1	ATTERB	ERG
					805	6F1A		6N18	6018				6JIA	6K1A	6L1A	6M1A	4F1	4F2
REST	PH	H20	ESP	SAR	TOTL		EC	CA	MĢ	NA	K	CO3	HCO3	CF	504	ND3		
DHM-					SDLU												LMIT	INDX
CM		PÇT	PCT		PPM	PCT												
						.,												
9900	4.2	28.7	3		40		Q.34	0.7	0.6	0.3	0.5							
	APAZAGA 2AGA 2AGA 2AGA 2C12 2C3 2C12	AP A	205 (20505 .002 (205- LT .05 .002 .002 (SAND SILT CLAY CLAY 205-LT LT .05.002.002.002.0002 (SAND SILT CLAY CLAY VCOS 205- LT LT 205 .002 .002 .0002 1 AP 39.9 48.1 12.0 4.1 1.1 A2 29.3 52.9 17.8 7.0 .7 2A46 77.6 16.1 6.3 2.4 2.5 2B\$A 47.7 28.7 23.6 12.6 4.6 2C1 76.6 13.0 10.4 4.1 2C2 21.2 38.8 40.0 2.4 2C3 48.5 27.5 24.0 3.7 2AP (A) PARTICLE SIZE ANALYSIS, MM, 38, 381, 382 VOL. (MEIGHT) LT20 FR GT GT 75-20 20-5 5-2 LT 20-2 75 PCT PCT (PCT LT 75) LT20 TR O TR TR 1 62 1 0 0 0 0 0 74 0 0 0 0 0 74 0 0 0 0 0 0 74 0 0 0 0 0 0 74 0 0 0 0 0 0 0 74 0 0 0 0 0 0 0 74 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 TR O TR TR TR TR TR RGANIC MATTER) IRON PHOS (- EXTRACT 6A1A 6B1A C/N 6C2B 0 O TR TR TR TR RGANIC MATTER) IRON PHOS (- EXTRACT 6A1A 6B1A C/N 6C2B 0 CARB PCT PCT PCT PCT PCT PCT C 1.32 .099 13 0.7 12.6 0.5 0.03 .036 9 0.9 6.2 0.8 0.08 .010 0.2 0.8 0.3 0.07 .022 0.5 1.3 1.1 0.03 0.1 0.7 0.7 0.03 0.1 0.7 0.7 0.03 0.1 0.7 0.7 0.03 0.1 1.5 1.9 3.0 SATURATED PASTE) NA NA SALT GYP SATURATED PASTE) NA NA SALT GYP CM PCT	SAND SILT CLAY CLAY VCOS CORS 205- LT LT 2- 105 .002 .002 .0002 1 .5 AP 39.9 48.1 12.0 4.1 1.1 2.0 A2 29.3 52.9 17.8 7.0 .7 1.7 2A68 77.6 16.1 6.3 2.4 2.5 4.8 2B\$A 47.7 28.7 23.6 12.6 4.6 4.9 2C1 76.6 13.0 10.4 4.1 5.1 2C2 21.2 38.8 40.0 2.4 2.3 2C3 48.5 27.5 24.0 3.7 6.1 PARTICLE SIZE ANALYSIS, MM, 38, 381, 382 (8U) VOL. (SAND SILT CLAY CLAY VCOS CORS MEDS 2050707002 1 .5 .505 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .05 .002 .002 1 .5 .25 .07 .07 .07 .07 .07 .07 .07 .02 .02 .003 .03 .036 9 0.9 .6.2 0.8 0.2 0.2 .003 .010 .02 .05 .1 .1 .1 .1 .2 .0 3.8 .00 .003 .010 .02 .05 .00 .07 .07 .07 .0.1 0.2 .003 .03 .036 9 0.9 .6.2 0.8 0.2 0.2 .003 .030 .03 .03 .03 .03 .03 .03 .03 .0	SAND SILT CLAY CLAY VCOS CORS MEDS FNES 205- LT LT 2- 15252505 .002 .002 .0002 1 .5 .25 .10 (SAND SILT CLAY CLAY VCOS CORS MEDS FRES VFNS 2-05-LT LT 2-1-5-25-10 -05-002-002-0002 1 -5-25-10 -05-002-002-0002 1 -5-25-10 -05-002-002-0002 1 -5-25-10 -05-002-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-0002 1 -5-25-10 -05-002-002-002-10 -05-002-002-002-10 -05-002-002-002-10 -05-002-002-002-10 -05-002-002-002-10 -05-002-002-002-10 -05-002-002-002-10 -05-002-002-002-002-10 -05-002-002-002-002-10 -05-002-002-002-002-002-10 -05-002-002-002-002-002-002-002-002-002-	SAND SILT CLAY CLAY COS CORS MEDS FMES VFMS COS 05 05 05 1 LT 2- 1 5 25 10 05 05 002 002 0002 1 5 25 10 05 02 10 05	SAND SILT CLAY CLAY VCOS CORS MEDS FNES VFNS COST FNSI 20505 LT LT 2- 1525 .10 .05 .02 .05 .002 .002 .002 .002 1 .5 .25 .10 .05 .02 .002 (SAND SILT CLAY CLAY VCOS CORS MEDS FNES VFNS COSI FNSI VFSI 2-05 - 05 - 05 - 05 - 05 - 02 - 002 - 002 - 002 - 0002 1 - 5 - 25 - 10 - 05 - 02 - 002 - 002 - 0002 1 - 5 - 25 - 10 - 05 - 02 - 002 - 0002 - 0002 1 - 5 - 25 - 10 - 05 - 02 - 002 - 0002 - 0002 - 0002 1 - 5 - 25 - 10 - 05 - 02 - 00	SAND SILT CLAY CLAY VCOS CORS MEDS FRES VFNS COSI FNST VFST TEXT 2-05-LT LT 2-1-5-25-10-05 02 .009-SAND .05 .002 .002 .002 .002 1 .5 .25 .10 .05 .02 .002 .002 .002 AP 39.9 48.1 12.0 4.1 1.1 2.0 3.8 24.7 8.3 22.0 26.1 4.6 31.6 AZ 29.3 52.9 17.8 7.0 .7 1.7 3.2 17.2 6.5 23.9 29.0 5.6 22.8 266 77.6 16.1 6.3 2.4 2.5 4.8 7.3 46.7 16.3 6.4 9.7 3.4 61.3 1286A 47.7 28.7 23.6 12.6 4.6 4.9 3.7 16.9 17.6 10.0 18.7 7.4 30.1 12C1 76.6 13.0 10.4 4.1 5.1 4.3 26.5 36.6 5.0 8.0 3.8 40.0 12C2 21.2 38.8 40.0 2.4 2.3 1.3 5.0 10.2 10.7 28.1 10.5 11.0 12C3 48.5 27.5 24.0 3.7 6.1 4.2 17.1 17.4 8.2 19.3 8.7 31.1 2AP (A) PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)(BULK DENSITY)(HATER CONTENT) VOL. (MEIGHT) 4.10 4A1H 401 481C 481C 482 4C1 GT GT 75-20 20-5 5-2 LT 20-2 1/3-0 UPN COLE 1/10 1/3-15- MRD CT CT 75-20 20-5 5-2 LT 20-2 1/3-0 UPN COLE 1/10 1/3-15- MRD CT CT 75-20 20-5 5-2 LT 20-2 1/3-0 UPN COLE 1/10 1/3-15- MRD CT CT 75-20 20-5 5-2 LT 20-2 1/3-0 UPN COLE 1/10 1/3-15- MRD CT CT (PCT LT 75) LT20 G/CC G/CC PCT PCT CM FR 0 TR TR 1 62 1 1.47 1.53 .014 22.6 20.2 5.6 .22 0 0 0 0 0 0 74 0 1.69 1.70 .002 19.4 17.7 7.3 .18 5.46 0 0 0 0 0 0 0 74 0 1.69 1.70 .002 19.4 17.7 7.3 .18 5.46 0 0 0 0 0 0 0 77 0 1 0 1.69 1.70 .002 19.4 17.7 7.3 .18 5.46 0 0 0 0 0 0 0 0 35 0 0 15.5 0 0 0 0 0 0 0 0 35 0 0 15.5 0 0 0 0 0 0 0 0 35 0 0 15.5 0 0 0 0 0 0 0 0 0 85 0 0 15.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAND SILT CLAY CLAY	SAND SILT CLAY CLAY CLOS CORS MEDS FRES VFMS COSI FMSI VFSI TEXT 11 CLAY 2- 0.5 - 1.7 LT 2- 152510 - 0.5 .02 .002 .005 .5AN .2- TO	-05 -002 -002 -002 -002 -05 -02 -00

⁽A) COMPOSITE OF SEVERAL SURFACE SAMPLES.

(B) MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10- BAR.

A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

Soil classification: Aquic Glossoboralfs; fine-losmy, mixed .

Soil: Kert.

Soil No.: S70WI-71-5.

Location: Wood County, Wisconsin; SWk, SEk, Sec. 19, T. 24 N., R. 3 E.; 500 feet east and 300 feet north of

field corner.

Climate: Humid continental; mean annual temperature is about 43° F mean annual precipitation is about 30 inches; and frost-free season is about 133 days.

Vegetation and land use: Original vegetation was mixed northern hardwoods with some coniferous trees. Most areas of this soil are in second-growth woodlots. Cleared areas are used for general farming.

Parent material: Thin silty sediments over stratified residuum from sandstone and shale.

Physiography: Rock-controlled upland on gently sloping or nearly level relief.

Topography: Site is on a 1 to 2 percent plane slope.

Drainage: Somewhat poorly drained.

Ground water: Deep - perched water table exists at a depth of 2 feet or less in this soil for some periods

most years.

Erosion: Slight.

Permeability: Moderate to slow. Described by: Paul H. Carroll

(Colors are for moist conditions unless designated otherwise)

Ap 70L952 0 to 14 cm (0 to 5 inches). Very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine subangular blocky structure; friable; many fine fibrous roots; neutral; abrupt smooth boundary.

A2 70L953 14 to 35 cm (5 to 14 inches). Brown (10YR 5/3) silt loam with many fine prominent mottles of yellowish brown (10YR 5/6-5/8); weak fine platy structure; friable; common fine fibrous roots; strongly acid; clear wavy boundary.

IIA68 701954 35 to 55 cm (14 to 22 inches). Pale brown (10YR 6/3) loamy fine sand (A2) with many fine prominent mottles of yellowish brown (10YR 5/6-5/8); very weak fine subsngular blocky structure; very friable; brown (10YR 5/3) sandy loam remnants of Bt are scattered through the horizon and occupy about 30 percent of the soil volume; few thin clay films are on faces of peds and in some pores or bridge sand grains in the Bt portion of the horizon; strongly acid; abrupt wavy boundary.

IIB6A 701955 55 to 83 cm (22 to 33 inches). Reddish brown (2.5YR 4/4) sandy clay losm (8t) with many fine prominent mottles of strong brown (7.5YR 5/6) and brown (7.5YR 5/2); strong coarse platy structure parting to moderate fine angular blocky structure; very firm; continuous thick clay films of very dark gray (10YR 3/1) and dark gray (10YR 4/1) along horizontal cleavage planes and thin on faces of angular blocky pads; brown (10YR 5/3) tongues of fine sandy loam (A2) penetrate the horizon from above and occupy approximately 35 percent of the soil volume; many fine prominent mottles of strong brown (7.5YR 5/6-5/8); weak fine subangular blocky structure; firm; strongly acid; clear wavy boundary.

IIC1 70L956 83 to 100 cm (33 to 40 inches. Olive yellow (2.5Y 6/6) and pale green (5G 7/2) loam; weak fine angular blocky structure; firm; few thin clay films on vertical faces of peds; thin (approximately 1/2 inch) layers of pale brown (10YR 6/3) and light yellowish brown (10YR 6/4) hard platy sandstone at intervals of approximately 2 inches; very strongly acid; abrupt smooth boundary.

IIC2 701957 100 to 132 cm (40 to 52 inches). Dark reddish brown (2.5YR 3/4) silt loam; weak fine angular blocky structure; firm; few thin clay films on vertical faces of peds; few thin pinkish gray (7.5YR 7/2) silt coats on faces of peds; very strongly acid; abrupt smooth boundary.

IIC3 70L958 132 to 172 cm (52 to 68 inches). Olive (57 5/3,5/4) and pale green (56 7/2) clay losm; weak fine angular blocky structure; firm; few thin clay films on vertical faces of peds; thin (approximately 1/2 inch) layers of pale brown (10YR 6/3) hard platy sandstone at intervals of approximately 4 inches; strongly acid.

Additional notes: At 150 cm depth, the soil temperature is 12.50 C.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S74WI-67-3 CCUNTY - - + LANGLADE

GENERAL METHCOS- - -14,1818,241,28

SAMPLE NOS. 74L850-74L856

DEPTH	HCRI	ZON				FINE	1		SAMD .		1	11	-SII T-		3	TATE	FINE CLAY TO CLAY	MCM-	201
CH			(PC	T LT 21	IN) PCT	PCT	CLAY
000-005 COS-015 C15-050 C5C-096 096-175 175-195	CA1 0A2 0A3 0A4 0A5 LC0 2C6		16.5	64-1	19.4		1.4	3.0	3.6	3.8	4.7	31.9	32.2		11.8				5.01
CM CM		(WE1 WE1 - 20-5 - PCT L	GHT -			1/3- BAR G/CC	4A1H OYEN DRY G/CC	4D1 COLE	481C 1/10 8AR PCT	481C				6E1B	ONATE BALA LT -OOZ PCT	8Ç1A 1/1	
COQ-CC5 GOS-O15 O15-O50 GSQ-O96 C96-175 175-195	TR C C C C TR	0 0 0 0 0	0 0 0 0	0 0 0	TR O O O C O TR		TR O O O O TR	.08 .12 .12	.17 .27 .25		1230 775 819	665	79.6 104 102 101 98.4	. 90 .81 .86				4.7 5.6 5.7 6.0 6.1	4.3 5.4 5.1 5.1
DEPȚH (C		6#1A	C/N	6C2B EXT PE PCT	TCTL PCT	CA 6N2E	602D MG	6P2B NA 	602B K	SUM EXTB 2 / 100	6HIA Bacl Tea	6G1E KCL EXT	SABA EXTB ACTY	5A6A NHAC	8D1 NHAC TO	TΩ		5C3 EXTB ACTY PCT	SAT : 5C1 NHAC
CCQ-CQ5 QQ5-Q15 Q15-Q5Q Q5Q-Q96 C94-175 175-195	49.1	1.62 1.76 1.74	3C 30 29 28			48.8 149 173 190 185	10.3	•2 •3 •2	2.6 .6 .1	61.9 199 219 242 236	94.9 57.2 61.2 60.0 46.8		157 256 280 302 283	103 192 200 213 201		4.7 3.1 3.8 3.7 3.6	78 87 89	39 78 78 78 80 83	66 103 104 114
СН	BE1 F REST OHF- CM	PH PH	H20 PCT	5D2 ESP PCT	NA SE SAR	SALT 805 TOTL SGLU PPM	6F1A PCT	EALA EC	6N1B CA	601B MG	6P1B NA	6018 K	611 A CO3	HÇ03	CL CL	6L1A 504	6M1A NO3	4F1 LQID LMIT	4F2 PLST
C00-005 005-015 C15-C50 050-096 C96-175 175-195	3100 6500 3600 1300 1400	4.7 5.4 5.7 5.8	582 1030 737 691 700			1400 1200 1500 6500 4900		.57 .14 .31 1.18	1.9 1.0 1.9 8.7 6.6	.8 .6 1.1 5.7 4.2	.1 .1 .1 .1 .1	1.0 .1 †R .1	0 0	2.1 1.2 1.2 .6		.9 .0 1.1 15.3 12.2	1.6 .0 .0 .0		
DEPTH CM	8F	(STAT	E CF (86 R VOL) RUB PCT	PYROP SCLUB (MUNS	SITICI H HOSPHI	N) PH 8C16 T .019 CAC	(BUL	K DEN! 4A11 1/36 RENT	COLI 401 RE-	E SUBS L RES-	(484 FILD STAT	MATER 4810 1/38 REWITER PCT	CONTENTS 483	NT 2 40: - WRI 2 CM.) L	*			
COC-COS COS COS COS COS COS COS COS	26 16 16 20 24	56 30 36	30A 12 10 3	10YR 10YR 10YR	6/3 5/3 5/3 4/2 3/2	5.2 5.6 5.5 5.6 5.9	.1: .1:	.09 .14	9 .24 1 .24 5 .19	35 40 70 76 63	499 674 595 494 542	77 <u>9</u> 486	87-3 104 3 98-0 90-3	.60 .5:	5				

⁽A) INCLUDES LIVE ROOTS (20 PCT).

Soil classification: Typic Borosaprist; euic.

Series: Lupton.

Pedon No.: \$74WI-67-3.

Location: Langlade County, Wisconsin; NWs, SWs, NE%, Sec. 18, T. 32 N., R. 11 E.; 250 feet east of Hwy B; 1,000 feet north of section center. About 45.2 north latitude and about 89.0 west longitude.

Climate: Humid continental. Mean annual temperature is 42.2° F; mean July temperature is 68.5° F; mean January temperature is 13.8° F; mean annual precipitation is 29.86 inches with nearly two-thirds of this during the growing season; total amount of snowfall is 48 inches; frost-free season is 138 days at Antigo but less on organic soil areas.

Parent material: Organic soil material derived primarily from woody plants mixed with sedge, grass, and reed remains.

Physiography: Moderately deep depression between a large, nearly level, outwash plain to the south and a major rolling recessional moraine to the north. Bog area is nearly level. Elevation is about 1,560 feet.

Vegetation: Overatory of white cedar, balsam fir, black ash with scattered soft maple, American elm and tamarack. Lower story of grasses, forbs, sedges, and reeds.

Size of area: 160 to 200 acres.

Distance to adjacent mineral soil: About 600 feet.

Depth to water table: About 1 foot or 30 cm.

Microrelief: Few low small hummocks less than 12 inches high.

Subsidence: Slight; road ditch provides some drainage to area and some subsidence has taken place.

Soil temperature: Messured soil temperature of 13.0° C. at 50 cm.

Described and sampled by: G. Hudelson, Warren Lynn, W.E. McKinzie, and S. Payne on Aug. 8, 1974. Samples were obtained from a pit dug with a spade and posthole digger.

Oal 74L850 0 to 5 cm. Black (5YR 2/1) broken face, rubbed, or pressed sapric material; weak medium subangular blocky structure; very friable; fiber content 25 percent undisturbed, 8 percent rubbed; fibers primarily from grasses and sedges; mineral content about 10 percent; many fine and few coarse roots; pH 6.5 (Truog); clear smooth boundary.

Oa2 74L851 5 to 15 cm. Black (5YR 2/1) broken face, rubbed or pressed sapric material; weak medium and coarse subangular blocky structure; very friable; fiber content 20 percent undisturbed, less than 5 percent rubbed; fibers dominantly from grasses and sedges, with a few conifer needles; mineral content about 10 percent; few coarse roots; pH 6.5 (Truog); abrupt smooth boundary.

Oa3 74L852 15 to 50 cm. Black (5YR 2/1) broken face, rubbed or pressed sapric material; weak coarse platy structure with a few weak medium subangular blocks; very friable; fiber content 15 percent undisturbed and less than 5 percent rubbed; fibers are dominantly woody with a some herbaceous; estimated 15 percent wood fragments with dark reddish brown (5YR 3/4) color; mineral content about 15 percent; few coarse roots; pH 6.5 (Truog); clear smooth boundary.

Oa4 741853 50 to 96 cm. Black (5YR 2/1) broken face, rubbed, or pressed sapric material; weak coarse platy structure with a few thin plates; very friable; fiber content about 25 percent undisturbed and 8 percent rubbed; fibers are dominantly woody with some herbaceous; about 35 percent wood fragments with reddish brown and dark reddish brown (5YR 4/4 and 3/4) colors; mineral content about 10 percent; pH 6.5 (Truog); clear smooth boundary.

Oa5 741854 96 to 175 cm. Dark reddish brown (5YR 2/2) broken face sapric material; black (5YR 2/1) rubbed and dark reddish brown (5YR 2/2) pressed; weak coarse platy structure; very friable; about 20 percent fibers undisturbed, 5 percent rubbed; fibers dominantly woody with some herbaceous; about 10 percent wood fragments with reddish brown (5YR 4/4) color; 10 percent mineral matter; pH 7.2 (Truog); gradual wavy boundary.

Lco 74L855 175 to 195 cm. Dark reddish brown (5YR 3/2) broken face, rubbed, or pressed limnic material; massive; very friable; pH 7.2 (Truog); abrupt smooth boundary.

IICg 74L856 195 cm plus. Dark gray (5Y 4/1) silt loam; massive; friable.

SOIL NG - - - - - S74WI-83-1

COUNTY - - - OCONTO

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

GENERAL	. METHO	DS	-1A,1	818.2A1	.28			SAMP	LE NOS.	. 74L6	164-74L	.671							
DEPTH	HCRI		SAND 2- -05	SILT .05~ .002	CLAY LT •GGZ	FINE CLAY LT	vcos 2-	CORS 1-	SAND - MEDS -5- -25	FNES .25	VFHS .10-	COSI .05	3A1, SILT- FNSI .02 .002	VFS1 .005	3A1B SAND - 2- -10	INTR II •2 •02	FINE CLAY TO CLAY	NON- CO3- CLAY	801 15- BAR TO
CCC-020 020-038 038-046 046-070 170-117 117-150 150-215 215-358	GA2 OE CA3 CA4 DA5 CE2						1	J=				,							
DEPTH CM		(GT 75	75-20	LYSIS, - WEI 20-5	GHT - 5-2	LT -074	20-2 PCT	4A1D 1/3- BAR	4A1H OVEN DRY	4D1	481C			TENT- 4C1 WRD CM/ CM					
CQQ-Q2Q Q2Q-Q38 C38-Q46 Q46-Q7Q C7Q-117 117-15Q 15Q-215 215-358	TR TR 0 0	0000000	000000000000000000000000000000000000000	TR TR TR O O O	TR TR G TR C G		TR TR TR TR O O	.29	.54 .76 .44		309 283 380	249 211 320	68.8 58.3 82.6 81.1	.70 .74 .75				6.5 6.5 6.1 6.0	6.0 6.1 5.7 6.0
CEPTH (6A1A ORGN CARB PCT	6B1A NITG PCT	C/N	AÇZB EXT FE PCT	TETL PCT	6N2E CA (602D MG	6P 28 NA 	MEC	SUM EXT8) / 100	6H1A BACL TEA G	6G1E KCL EXT	SASA EXTB ACTY	SAGA NHAC	8D1 NHAC TO		CA 5F1 SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	SAT) SC1 WHAC
000-020 020-038 038-046 046-070 070-117 117-150 15C-215 215-358	36.1 34.8 46.6 45.5	1.73 1.68 2.26 1.58	21 16 21 29			100 118 147	25.4	-2 -2	.3 .1 .3	126 146 174	18.1 23.9 46.6 61.7		144 169 221 267	107 116 164 199		3.9 4.3 5.6 6.1	102 90	87 86 79 77	118 125 106 103
CEPTH	SATURA BEL S REST OHM- CM	ATED P BC18 PH	ASTE) 8A H2G PCT	5D2 ESP PCT	NA SE SAR	SALT 805 TOTL SCLU PPM	6F1A PCT	BA1A EC RMHCS/ CM	GNIB CA	ME 	6P1B NA 	K 6018	611A CO3	6JLA HCO3	CF PKT V	6LIA SO4	691 A NO3	4F1 LQID LNIT	4F2 PLST
C00-02C 020-038 038-046 046-070 070-117 117-150	2500 2300 2500	7.1 6.5	491 615 614 510	*****		1600 2300 2700 1900		.41 .56 .65	3.1 3.8 4.5 3.8	1.8 2.0 2.1 1.6	•1 •1 •3 •3	.1 TR TR .0	0 0	1.8 1.5 .6	.5 .5 .2 .5	2.2 4.1 5.8 4.8	1.6 1.1 .0 .0		7 -
150-215 215-358		5.7	238			5400		3.41	22.9	11.4	.4	.6	0	1.2	.2	5.4	30.0		
CEPTH	95	(STAT	E GF (8G R VOL		S IT IOI H HOSPH'	HISTO: 4) PH BC1: 110. T	OL CHA (BUL 4A3A FILO STAT	.K DEN 4 441 3 1/3) COLE 1 4D B RE- T WET	RES-	(484 Fild Stat	WATER 481C 1/3B REWT	CONTEN 482 15- BAF	IT : 2 4C: - Wri 6 CM:	l L		-1-0-4		
000-020 020-038 038-046 046-070 070-117 117-150 150-215 215-358	24	37 28 57 16 16 38 48 56	8 4 11 3 4 12 11 16		4/ 3/ 3/ 3/ 5/ 6-5/	2 6.9 2 7.1 2 6.1 1 5.6 2 6.1 3 5.9 3 5.9 5 5.8	.20	ı	7 .18	41 44 76	296 364 399	242	62.3 73.2 83.3 75.6	?	5				

Soil classification: Typic Borosaprist; euic.

Series: Lupton.

Pedon No.: \$74WI-83-1.

Location: Oconto County, Wisconsin; NE%, NW%, Sec. 14, T. 29 N., R. 21 E.; 200 feet east of NW forty line and 80 feet south of center of road. About 45.0 deg. north latitude and about 88.1 deg. west

longitude.

Climate: Humid continental. Mean annual temperature is 44.9° F; mean July temperature is 70.9° F; mean January temperature is 18.6° F; mean annual precipitation is 27.05 inches with nearly two-thirds of this during the growing season; total amount of snowfall is 39.8 inches; frost-free season is 133 days at Marinette but less on organic soil areas. (Data from Oconto, WI., weather bureau

substation.)

Parent material: Organic soil material derived primarily from woody plants with some herbaceous plant remains. Physiography: Moderately deep depression in a large, gently undulating lake plain. Bog area is nearly level.

Elevation is about 900 feet.

Vegetation: Overstory of white cadar, black ash, willow, white birch, and tag alder with an understory of

sedges, grasses, and forbs.

Size of area: About 2,000 acres.

Distance to adjacent mineral soil: 1,450 feet to west.

Depth to water table: 50 cm.

Microrelief: Many low hummocks 12 to 18 inches in height.

Subsidence: Slight; area has not been drained.

Soil temperature: Measured soil temperature of 58° F at 20 inches.

Described and sampled by: G. Hudelson, Warren Lynn, W.E. McKinzie, H. Lorens, G.B. Lee, and A.J. Klingelhoets

on Aug. 5, 1974. Samples were obtained from a pit down to 46 inches and with a

peat sampler to a depth of 144 inches.

0 to 20 cm. Black (10YR 2/1) broken face, rubbed, or pressed sapric material; weak fine subangular blocky structure; very frisble; about 10 percent fibers undisturbed, less than 2 percent rubbed; fibers dominantly woody with some herbaceous; 20 percent mineral content; many fine and large roots; pH 7.5 (Truog); clear smooth boundary.

Oa2 74L865 20 to 38 cm. Black (10YR 2/1) broken face, rubbed, or pressed sapric material; weak coarse prismatic structure parting to weak medium subangular blocky structure; very friable; about 5 percent fibers undisturbed, less than 2 percent rubbed; fibers dominantly woody; about 20 percent mineral content; few roots; pH 7.5 (Truog); clear smooth boundary.

38 to 46 cm. Black (7.5YR 2/1) broken face hemic material; black (10YR 2/1) rubbed and very

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

																OIL CONS	ERVATION	SERVICE	
	SOILMa	gnor te	axadjunct			\$0#	L Nos.	869WI	-54-2	LOCAT	rion _	Rusk (County	, Wisco	nsin				
	-011 -11515		Qalterii	illa Mandar															
	SUIL SURVEY	LABORATO	ORY <u>Beltsvi</u>	me, maryiar						LAB. 1	nos	OADS2	5 - 69	TOT		,			
	I 	1	1 <u>81</u> b					Size ch	us and north	cle diameter ((mm) 3Å	1					_		
		l	Tota	al	1			Sand	iso sije bertu	Sitt	inny an		_	Ì	382	Coa	rse fragme	ets 38í	
	Depth	Horizon	Sand Si	sift Clay	Very	Coarse'	Medium	Fine	Very fine		int. XX	int. 🎞				2A2	1		
	((2,-0,95) (0.0		Very coerse	(1-0.5)	0.5-0.26	(0.25-0.1	1-0.05	0 05-0 02 /0	1.02_		/2=0 2\	<.074	Can	> 2	2 - 19	19-76	
1																			
b																			
_																			
i.																			
•																			
·····																			
1.																			
••					<u></u>														
_																			
ı																			
υ,																			
` 	_																		
	4:																		
,													'						
																			
-							L.												
76-																			
<u> </u>	•													•		·			
1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1																			
. .																			
, ex																			
LP																			
<u>'</u>																			
P.																			
• f																			
-																			
ī''																			
- -																			
<u>_</u>																			
<u> </u>																			
A-																			
																			
*																			
<u> </u>																			

Soil classification: Dystric Entrochrept; coarse-loamy, mixed, frigid.

Soil: Magnor taxadjunct*

Soil No.: \$69WI-54-2.

Location: Rusk County, Wisconsin; SWs, SE's, Sec. 33, T. 36 N., R. 6 W.; 50 feet east and 100 feet north of inter-

section of fence line with the road.

Climate: Humid continental; mean average temperature ranges from 41° to 45° F; mean annual precipitation is

30 inches and frost-free season is about 125 days.

Vegetation and land use: Native vegetation was mixed northern hardwoods with some pine. Principal species were oak, ash, elm, maple, aspen and white pine. About 50 percent of this soil is used for cropland

and livestock pasture. Corn, oats, and forages are the principal crops.

Parent material: Thin loess cap over acid sandy loam glacial till.

Physiography: Nearly level to sloping glacial till plain.

Topography: Nearly level site with 1 percent slope.

Drainage: Somewhat poorly drained.

Ground water: Sessonally less than 3 feet from surface.

Erosion: Slight.

Permeability: Moderately slow. Described by: Paul H. Carroll

(Colors are for moist soil unless otherwise stated)

Ap 69B255 0 to 20 cm (0 to 8 inches). Very dark grayish brown and dark grayish brown (10YR 3/2 & 4/2) silt loam, gray (10YR 6/1) dry; weak fine subangular blocky structure; friable; many roots; medium acid; abrupt smooth boundary.

A2 69B256 20 to 34 cm (8 to 14 inches). Variegated brown and yellowish brown (10YR 5/3, 5/6, 5/8) silt loam marginal to silt; weak fine platy structure; friable; many roots; strongly acid; clear wavy boundary.

IIA6B 69B257 34 to 46 cm (14 to 18 inches). Dark grayish brown (10YR 4/2) sandy loam A2 material occupies about 60 percent of the horizon body and surrounds isolated remnants or unward extensions of reddish brown (5VR 4/4) sandy

loam or loam with slightly higher clay content and with common medium distinct mottles of yellowish red (5YR 4/6-4/8); weak coarse platy structure in the A2 material and weak medium subangular blocky structure in the B2t material; friable; common roots; very strongly acid; clear wavy boundary.

IIB&A 69B258 46 to 62 cm (18 to 23 inches). Reddish brown (5YR 4/4) sandy loam with common medium prominent yellowish red (5YR 4/8) mottles and dark reddish gray (5YR 4/2) tongues of sandy loam with slightly lower clay content; A2 tongues with common medium distinct reddish brown (5YR 5/4) mottles occurs shout 30 percent of the horizon.

body; moderate medium subangular blocky structure in the B2t portion of the horizon and weak thick platy structure in the A2 portion; friable in the A2 portion and firm with slightly fragic consistence in the B2t portion; thin patchy clay films on horizontal faces of peds and in pores and accumulated as small pockets or horizontal streaks at the base of the tongues. Contains 8 to 10 percent gravel and cobblestones; common roots; strongly acid; clear irregular boundary.

IIB2t 69B259 62 to 84 cm (23 to 33 inches). Dark reddish brown (5YR 3/4) sandy loam with thin interfingers and occasional tongues (2 to 6 cm thick) of loamy sand extending halfway through this horizon; moderate thick platy structure parts under pressure to weak medium subangular blocky structure; firm with slightly fragic consistence; few thin clay films continuous or nearly so on horizontal faces of peds and common on vertical faces of peds; reddish brown (5YR 4/4) sand coats on some faces of peds along vertical cleavage planes in upper part of horizon; contains 8 to 10 percent gravel and cobblestones; few roots; medium acid; gradual wavy boundary.

IIB3t 69B260 84 to 109 cm (33 to 43 inches). Dark reddish brown (5YR 3/4) sandy loam; weak thick platy structure parting to somewhat weaker medium subangular blocky structure; friable; thin patchy clay films on plate surfaces; contains 8 to 10 percent gravel and cobblestones; few roots; slightly acid; gradual wavy boundary.

IIC 69E261 109 to 150 cm (43 to 60 inches). Reddish brown (5YR 4/4) sandy loam; weak thick platy structure; friable; contains 8 to 10 percent cobblestones and gravel; slightly acid; gradual wavy boundary.

*This pedon lacks an argillic horizon; therefore, it is a taxadjunct to the Magnor series.

	SOILMa	TOT LAK	ed junct	<u> </u>			so	IL Nos.	369W	1-54-3	LOC	MOITA	Rusk	County	, Wis	consin			
	SOIL SURVE	y laborato	RY Be	itsville, l	Marylan	d					LAE	8. Nos	69в26	62 - 69	эв269				
		-	181b						Size cla	es and part	icle diamet	er (mm) 3A	1						<u> </u>
				Total			-	<u> </u>	Send	1	Si	lt I			<.074	392	Coa 2A2	rse fragm	ents 381
	Depth (and)	Herizon	Şand (2-0.05)	Silt (0.05-	Clay (< 0.002)	Very coarse (2-1)	(1-0.5)	Medium (0.5-0.25)	Fine (0.25-0.1	Very fine		Int. III		(2-0.1)	mm	Cm	3- 2	2 - 19	1 1
	(cm)		-	(0.05 <u>–</u> 0.002)		(2-1)	Pcf			(0.1–0.05)					Pct.		Pct.		ct. of 76mm
	0-19	Ap A2	23.0	62.8 55.3 53.3	14.2	1.2	5.7 7.5 8.5	6.8 9.6 11.9	5.2 8.1 10.5	4.1 5.9 6.0	22.5 30.0 42.7	39.3	46.2 39.5 53.6	18.9	80.2	0.99	2	2	tr.
	19-34 34-46	A&B	38.5	53.3	14.2 11.8 8.2	1.2 1.8 1.6	8.5	11.9	10.5	6.0	42.7	10.6	53.6	27.0 32.5	71.6 65.7	0.99	1 5	1 3	tr.
	1	,	-	_ =	-	-	-	-											
				.											_				
<u>.</u>																			
1																			
/ —																			
<u>.</u>																			
* 'C'																			
-																			
7												-			-				
1.5.																			
- · ,																			
1				F															
<u> چين</u>																			
	7																		
															ı				
																		1	
-																			
<u></u>	· 75-75																		
_	1																		
f _q																			
		h																	
ζ. Σ.		<u> </u>																	
<u> </u>															-				
_																			
-																			
,																			
_																			

Soil classification: Typic Glossoboralf; coarse-loamy, mixed.

Soil: Magnor taxadjunct*.

Soil No.: 869WI-54-3.
Location: Rusk County, Wisconsin; NWs, SWs, Sec. 4, T. 35 N., R. 6 W; 100 feet east and 150 feet north of intersection of fence line and road.

Climate: Humid continental; mean average temperature ranges from 41° to 45° F. Mean annual precipitation is 30 inches and frost-free season is about 125 days.

Vegetation and land use: Native vegetation was mixed northern hardwood forest with some pine. Principal species were oak, ash, elm, maple, aspen, and white pine. About 50 percent of this soil is used for cropland and livestock pasture. Corn. small grain, and forages are the principal CTODS.

Parent material: Thin losss mantle over acid sandy loam glacial till.

Physiography: Nearly level to sloping glacial till plain.

Topography: Site is in a slight depression on gently sloping relief.

Drainage: Somewhat poorly drained.

Ground water: Seasonally less than 3 feet from surface.

Brosion: Slight.

Permeability: Moderately slow. Described by: Paul H. Carroll.

(Colors are for moist soil conditions unless otherwise noted)

698262 0 to 19 cm (0 to 7 inches). Very dark grayish brown (10YR 3/2) silt loam, light gray (10YR 6/1) dry; weak fine subangular blocky structure; friable; many roots; strongly acid; clear smooth boundary.

A2 69B263 19 to 34 cm (7 to 13 inches). Brown (10YR 5/3) silt loam with many fine prominent mottles of strong brown (7.5YR 5/6-5/8); weak thin platy structure; friable; many roots; strongly scid; clear wavy boundary.

A&B 69B264 34 to 46 cm (13 to 18 inches). Variegated pinkish gray (7.5YR 6/2) to strong brown (7.5YR 5/8) silt loam; interfingers and tongues, 3 to 6 cm wide and with colors of pinkish gray (7.5YR 6/2-7/2), extend from the A2 horizon above into the argillic horizon below to occupy approximately 55 percent of the horizon body; weak medium platy structure in the A2 material and weak medium subangular blocky structure in the B2t material; friable; clay content in the B2t material is slightly higher than that in the tongues of A2; many roots; very strongly acid; clear wavy boundary.

IIB&A 69B265 46 to 62 cm (18 to 24 inches). Variegated brown (7.5YR 5/2) through strong brown (7.5YR 5/8) loam; interfingers and tongues of A2 material, brown (7.5YR 5/2) in color and 3 to 6 cm wide, extend deeply into this horizon and occupy about 25 percent of the horizon body; weak thin platy structure in the A2 material and weak medium subangular blocky structure in the B2t portion; friable; slightly higher clay content in the B2t than in the A2 portion of the horizon; common roots; strongly acid; clear wavy boundary.

IIB2tx 69B266 62 to 83 cm (24 to 32 inches). Dark reddish brown (5YR 3/4) sandy loam with few dark-colored manganess spots and occasional loamy sand tongues of reddish brown (5YR 5/4) that continue downward from the lower-chroma tongues above; moderate medium subangular blocky structure that displays weakly-expressed coarse platiness throughout; firm with fragic consistence; clay films are thin and continuous or nearly so on horizontal faces of peds and thin and patchy on vertical faces; small clay pockets or thick clay coatings on faces of peds are observed at the lower and of the tongues that terminate in this horizon; contains 10 to 12 percent gravel and cobblestones; common roots; strongly acid; clear wavy boundary.

IIB3 69B267 83 to 106 cm (32 to 42 inches). Reddish brown (5YR 4/4) and dark reddish brown (5YR 3/4) sandy loam; weak medium subangular blocky structure with weakly-expressed coarse platiness throughout; firm with fragic consistence; contains occasional thin clay films on ped faces and thin (1 to 2 cm) horizontal streaks of reddish gray (5TR 5/2) and pinkish gray (5TR 6/2) sandy clay loam that may represent illuviated material from the A2 tongues above; contains 10 to 12 percent gravel and cobblestones; few roots; medium acid; clear wavy boundary.

IIC1 698268 106 to 124 cm (42 to 49 inches). Dark reddish brown (5YR 3/4) sandy loam; weak coarse platy structure; firm with fragic consistence; medium acid; contains 10 to 12 percent gravel and cobblestones; clear wavy boundary.

IIC2 69B269 124 to 150 cm (49 to 60 inches). Dark reddish brown (5YR 3/4) sandy loam; weak coarse platy structure; friable; contains 10 to 12 percent gravel and cobblestones; medium acid.

This pedon is in a coarse-losmy family; therefore, it is a taxadjunct to the Magnor series.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MYSC MATIONAL SOIL SURVEY LABORATORY LINCOLN, MEBRASKA

SOIL NO - - - - - S70WIS-37-3 COUNTY - - - MARATHON

GENERAL METHODS- - - 14, 1818.241, 28

SAMPLE NOS. 701883-701892

DEPTH	HOR J	ŽON				FINE	 (PARTIC	LE SIZE)(SILT-) FAML	INTR	FINE	NON-	8D1
			SAND	SILT	CLAY	CLAY	VCOS	CORS	MEDS	FNES	VENS	CDSI	FMST	VEST	TEXT	* *	CLAY	CO3-	15-
			.05	.002	.002	LT .000	2 1	.5	.25	.10	-05	-02	-002	-002	2-1	-02	CLAY	. GLAY	BAR
ÇM			(CLAY
00-17	AP		25.9	64.2	9.9)	2.6	3.4	7.0	8.3	3.8	29.1	35.1		22.1	35.9			.6
17-25	A2		21.2	69.4	9.4	2.0	1.3	2.5	6.1	7.3 6.9 8.8	4.0	29.1 31.9 31.7 30.5	37.5		17.2	30.3	21 18		.54
25-46	83A			70.1					5.8	6.9	4.2	31.7	38.4		15.5	38.Z	18		-4
146-73 173-96	85A 282T		25.4	63.5 11.9	11.1				7-4	8.8 15.1	4.6	30.5	33.0						-41
196-144				10.9				17.6		16.0	7.8	5.7	3.0		65.9	22.7	63		.5:
44-184				10.5	4.7		24.6			17.0	8.3	6.3 5.7 6.1 7.2	4.4		76.5	23.0	62 60		.7
84-234				12.9	5.8	1	14.6	21.6	12.4	21.2	11.5	7.2	5.7		69.8	30.2			.70
34-279 100-17		(A)	88.0	7.9	4.1	1.9	36.0	25.2	9.4	12.3	5-1	3.5	4.4		82.9	14.5	46.		.64
EPTH (3R. 3R													
	VOL.	(WE	IGHT -			1 4A1D	4A1H	4D1	4BlC	481C	482	4C 1		6E1B	3A1A	8C1A	8016
	GT	GT 75	75-20	20-5	5-2	L.T	20-2	1/3-	OVEN	COFE	1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
CM	PCT	PCT		PCT (1) LT20	BAR G/CC	G/CC		BAR PCT	BAR PCT	BAR PCT	CM/		PC T	PCT		CACI
00-17	1	0	0	TR	3	75	3	1.31		.015			6.6		3.98			4.8	4.4
17-25	TR	Ŏ	ō	TR TR TR	ì	81		1.50	1.53	.007					3.08			5.0	4.
	TR	0	0	TR	1	83		1.55			23.5	20.5	4.8	.24	2.58			4.8	3.9
46-73	_1	0	0	TR	. 2	77			1-64	.010	22.3	19.6		.23	3.08	1		4.7	3.9
73-96 196-144				17 12						.009 .016	21.2 19.1	19.1	7.3 5.8	-11				4-7	4.0
44-184		ŏ			38	.75		1.44		.014		16.6	3.6	.10				4.8 5.1	4.1

94-234 	44	, 	ń	74	34	10	Añ						4.5					4.0	A. 1
, L.,	44		1	74	34		40					-							4.1
34-279 100-17	44		ń			7	51 2					-	2.8					5.1 4.8	4.4
34-279 00-17	37 1	0	0	16 TR	35 2	7	51 2			 4&) ACTY	AL	2.8 6.3	EXCHI	RATIO	RATIO	CA	5.1 4.8	4.4
34-279 100-17	37 1	O O	0 0 0	16 TR IRON 6C2B	35 2 PHQS	7 (- +e) 6N2E	51 2 CTR ACT 6020	ABLE B	ASES 56		6HIA	4G1E	2.8 6.3 (CAT 5A3A	5A6A	RATIO 801		CA SF1	5.1 4.8	4.4
34-279 00-17 EPTH (C	37 1 DRGANIC 6A1A DRGN	O O	0 0 0	16 TR IRON 6C2B EXT	35 2 PHQS	7 (- +E)	51 2 CTR ACT 6020	ABLE B	ASES 56	SUM	6HIA BACL	AG1E KCL	2-8 6-3 (CAT 5A3A EXTB	5A6A	8D1 NHAC	BD3 CA	SF1 SAT	5.1 4.8 (BASE 5C3 EXTB	4.4 4.3 SAYI
34-279 00-17 EPTH (C	37 1 DRGANIC 6A1A ORGN CARB	O O O O O O O O O O O O O O O O O O O	0 0 0 ER 1 C/N	16 TR IRON 6C2B EXT FE	35 2 PHOS TOTL	7 (- +6) 6N2E CA	51 2 KTR ACT 6020 NG	ABLE B 6P2B NA	ASES 56 6028 K	SUM EXTB	6HIA BACL TEA	AG1E KCL Ext	2.8 6.3 ICAT 5A3A EXTB ACTY	5A6A NHAC	8D1 NHAC TO	BD3 CA TO	SAT NHAC	5.1 4.8 (BASE 5C3 EXTB ACTY	SAYI SCI NHAC
34-279 00-17 EPTH (C	37 1 DRGANIC 6A1A ORGN CARB PC T	O O O O O O O O O O O O O O O O O O O	0 0 0 ER 1 C/N	16 TR IRON 6C2B EXT FE PCT	35 2 PHOS TOTL PCT	7 (- +e) 6N2E	51 2 KTR ACT 6020 NG	ABLE B 6P2B NA	ASES 56 6028 K	SUM EXTB	6HIA BACL TEA	AG1E KCL Ext	2.8 6.3 ICAT 5A3A EXTB ACTY	5A6A NHAC	8D1 NHAC TO	BD3 CA TO	SF1 SAT	5.1 4.8 (BASE 5C3 EXTB	4.4 4.3 SATI SCI NHAC
34-279 00-17 EPTH (C	37 1 DRGANIC 6A1A ORGN CARB PC T	O O O O O O O O O O O O O O O O O O O	0 0 0 ER 1 C/N	16 TR IRON 6C2B EXT FE PCT	35 2 PHOS TOTL PCT	7 (- +6) 6NZE CA (51 2 (TR ACT 6020 MG	ABLE B. 6P2B NA	ASES 56 6028 K MEQ	SUM EXTB / 100	6HIA BACL TEA) G-	AG1E KCL EXT	2.8 6.3 {CA7 5A3A EXTB ACTY	5A6A NHAC)	601 NHAC TO CLAY	8D3 CA TO MG 7.2	SF1 SAT NHAC PCT	5.1 4.8 (BASE 5C3 EXTB ACTY PCT	SATI SCI NHAC
34-279 00-17 EPTH (C	37 1 DRGANIC 6A1A ORGN CARB PC T	O O O O O O O O O O O O O O O O O O O	0 0 0 ER 1 C/N	16 TR IRON 6C2B EXT FE PCT	35 2 PHOS TOTL PCT	7 (- +6) 6NZE CA (51 2 (TR ACT 6020 MG	ABLE B 6P2B NA 	ASES 56 6Q2B K 	SUM EXTB / 100 5.2 2.0	6H1A BACL TEA G- 12.8 10.5	4G1E KCL EXT 0.9 2.3	2-8 6-3 {CAT 5A3A EXTB ACTY 18-0 12-5	5A6A NHAC) 11.4 8.8	801 NHAC TO CLAY 1-15 0.94	8D3 CA TO MG 7.2 8.0	SF1 SAT NHAC PCT 38 18	5-1 4-8 (BASE 5C3 EXTB ACTY PCT	SATI SCI NHAC
34-279 00-17 EPTH (C CM 00-17 17-25 25-46	37 1 DRGANIC 6A1A ORGN CARB PCT 2.25C 0.79 0.35	0 0 0 0 E MATT 681A NITG PCT	0 0 0 C/N	16 TR IRON 6C2B EXT FE PCT	35 2 PHOS TOTL PCT	7 (- +E) 6NZE CA (51 2 XTR ACT 6020 MG 0.6 0.2	ABLE B 6P2B NA 0.1 0.1	ASES 98 6Q28 K 	SUM EXTB / 100 5.2 2.0 1.3	6H1A BACL TEA) G- 12.8 10.5 9.3	6G1E KCL EXT 0.9 2.3 3.6	2-8 6-3 (CAT 5A3A EXTB ACTY 18-0 12-5 10-6	5A6A NHAC) 11.4 8.6 8.0	8D1 NHAC TO CLAY 1-15 0-94 0-78	8D3 CA TO MG 7.2 8.0 4.5	SF1 SAT NHAC PCT 38 18	5-1 4-8 (BASE 5C3 EXTB ACTY PCT	4.4 4.3 SAT! SC1 NHAC PCT
34-279 00-17 EPTH (C CM 00-17 17-25 25-46 46-73	37 1 0RGANIO 6A1A 0RGN CARB PC T 2.25C 0.79 0.35	O O O O O O O O O O O O O O O O O O O	0 0 0 C/N	16 TR IRON 6C2B EXT FE PCT 1.1 1.1	35 2 PHOS TOTL PCT	7 6NZE CA (4.3 1.6 0.9	51 2 CTR ACT 6020 MG 0.6 0.2 0.2	ABLE B 6P2B NA 	ASES 58 602B K 	SUM EXTB / 100 5.2 2.0 1.3 1.7	6H1A BACL TEA C	6G1E KCL EXT 0.9 2.3 3.6 3.9	2-8 6-3 (CAT 5A3A 6XTB ACTY 	5A6A NHAC) 11.4 8.6 8.0 8.2	801 NHAC TO CLAY 1-15 0-94 0.78 0.74	8D3 CA TO MG 7.2 8.0 4.5 2.5	SF1 SAT NHAC PC7 38 18 11	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12	4.4 4.3 5C1 NHAC PCY
34-279 00-17 EPTH (C CM 00-17 17-25 25-46 46-73 73-96	37 1 0RGANIC 6A1A ORGN CARB PC T 2-25C 0-79 0-35 0-19	0 0 0 0 E MATT 681A NITG PCT	0 0 0 C/N	16 TR IRON 6C2B EXT FE PCT 1-1 1-1 1-1 1-1	35 2 PHOS TOTL PCT	7 6N2E CA (4.3 1.6 0.9 1.0 2.4	51 2 (TRACT 6020 MG 0.6 0.2 0.2	ABLE B 6P2B NA 0.1 0.1 0.1	ASES 58 6028 K MEQ 0.1 0.1 0.2	SUM EXTB / 100 5.2 2.0 1.3 1.7	6H1A BACL TEA 12.8 10.5 9.3 8.8 6.8	6G1E KCL EXT 0.9 2.3 3.6 3.9 2.4	2.8 6.3 {CAT 5A3A EXTB ACTY 18.0 12.5 10.6 10.5 11.2	5A6A NHAC) 11.4 8.6 8.0 8.2 10.5	801 NHAC TO CLAY 1-15 0-94 0-78 0-74 0-76	8D3 CA TO MG 7.2 8.0 4.5 2.5	SF1 SAT NHAC PCT 38 18 11 12 23	5-1 4-8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39	5.4 5.1 NHA(PCT
CM CM 00-17 17-25 25-46 46-73 73-96 96-144	37 1 5A1A ORGN CARB PCT 2-25C 0-79 0-35 0-19 0-04	0 0 0 0 E MATT 681A NITG PCT	0 0 0 C/N	16 TR IRON 6C2B EXT FE PCT 1-1 1-1 1-1 1-1	35 2 PHOS TOTL PCT	7 6N2E CA (4.3 1.6 0.9 1.0 2.4	51 2 CTRACT 6020 NG 0.2 0.4 1.6	ABLE B 6P2B NA 0.1 0.1 0.1 0.1	ASES 98 6028 K MEQ 0.1 0.1 0.2 0.3	SUM EXTB / 100 5.2 2.0 1.3 1.7	6H1A BACL TEA 12.8 10.5 9.3 8.8 6.8	6G1E KCL EXT 0.9 2.3 3.6 3.9 2.4	2-8 6-3 (CAT 5A3A 6XTB ACTY 	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6	801 NHAC TO CLAY 1-15 0-94 0.78 0.74	8D3 CA TO MG 7.2 8.0 4.5 2.5	SF1 SAT NHAC PCT 38 18 11 12 23 33	5-1 4-8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39	4.4 4.3 5C1 NHAC PCT 44 21 21 21
34-279 00-17 CM 00-17 17-25 25-46 46-73 73-96 96-144 484-234	37 1 5A1A ORGANIC 6A1A ORGN CARB PC T 2-25C 0-79 0-35 0-19 0-04 0-04 0-04 0-03	0 0 0 0 E MATT 681A NITG PCT	0 0 0 C/N	16 TR IRON 6C2B EXT FE PCT 1-1 1-1 1-1 1-1	35 2 PHOS TOTL PCT	7 6N2E CA (4.3 1.6 0.9 1.0 2.4	51 2 CTRACT 6020 MG 0.6 0.2 0.2 0.4 1.6 1.4	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1	ASES 56 6028 K MEQ 0.1 0.1 0.2 0.3 0.2	SUM EXTB / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5	6H1A BACL TEA 12.8 10.5 9.3 8.8 6.8 6.1 4.1	6G1E KCL EXT 	2-8 6-3 (CAT 5ATA 6XTB ACTY 18-0 12-5 10-5 10-5 10-3 6-0 8-6	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6	8D1 NHAC TO CLAY 1-15 0-94 0-78 0-76 0-85 1-47 1-31	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.6 2.0	SF1 SAT NHAC PCT 38 16 11 12 23 33 35 37	5-1 4-8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39 41 49 52	4.4 4.3 5C1 SC1 NHAC PCT 44 21 42 51 52 51
34-279 00-17 CM 00-17 17-25 25-46 46-73 73-144 44-184 84-234 34-279	37 1 1 6A1A ORGN IC 6A1A ORGN CARB PC T 2-25C 0-75 0-35 0-19 0-04 0-03 0-03 0-03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 C/N	16 TR IRON 6C2B EXT FE PCT 1-1 1-1 1-1 1-1	35 2 PHOS TOTL PCT	7 6N2E CA (4.3 1.6 0.9 1.0 2.4	51 2 CTRACT 6020 MG 0.6 0.2 0.4 1.6 1.4	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1	ASES 58 6Q2B K MEQ 0.2 0.1 0.1 0.2 0.3 0.2	SUM EXTB / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9	6H1A BACL TEA 0 G- 12.8 10.5 9.3 8.8 6.8 6.1 4.1	6G1E KCL EXT 	2-8 6-3 (CAT 5A3A EXTB 	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6	8D1 NHAC TO CLAY 1-15 0-94 0-78 0-76 0-85 1-47	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0	SF1 SAT NHAC PCT 38 18 11 12 23 33	5-1 4-8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39 41	4.4 4.2 5C1 NHAC PCT 44 21 42 55
34-279 00-17 	37 1 DRGANIC GARA ORGN CARB PC T 0.79 0.35 0.19 0.04 0.04 0.03 0.03 0.02 2.14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N C/N 14 13 12	16 TR IRON 6C2B EXT FC PCT 1-1 1-1 1-1 1-1 1-8 1-9 1-5	35 2 PHOS TOTL PCT	(E) 6N2E CA (4.3 1.06 0.9 1.0 2.4 2.5 2.4 2.8 2.4	51 2 CTRACT 6020 MG 0.2 0.4 1.6 1.4 1.4	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1	ASES 98 6028 K 	SUM EXTB // 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12.8 10.5 9.3 8.8 6.1 4.1 4.1	6G1E KCL EXT 	2-8 6-3 ICAT 5A3A EXTB ACTV 18-0 12-5 10-6 10-5 11-2 10-3 6-0 7-2	5A6A NMAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1-15 0-94 0-78 0-76 0-85 1-47 1-34	8D3 CA TO MG 7-2 8-0 4-5 2-5 1-8 2-0 2-4	SF1 SAT NHAC PCY 38 18 11 12 23 33 35 37 44	5-1 4-8 5C3 EXTB ACTY PCT 29 16 12 16 39 41 40 52 50	5.4 5.1 NHAC PCT
34-279 00-17 CM 00-17 17-25 25-46 46-73 73-96 96-144 44-184 84-234 300-17	37 1 0RGANIC 6A1A 0RGN CARB PCT 2-25C 0-79 0-35 0-19 0-04 0-03 0-03 0-02 2-14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N C/N 144 13 12	16 TR IRON 6C2B EXT FE PCT 1-1 1-1 1-1 1-1 1-8 1-9 1-4	35 2 PHOS TOTL PCT	7 (E) 6N2E CA (4-3 1-6 0.9 1-0 2-4 2-5 2-4 2-8 2-4	51 2 (TRACT 6020 MG 	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1	ASES 58 6028 K MEQ 0.1 0.1 0.3 0.2 0.2 0.2	SUM EXT8 / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12.8 10.5 9.3 8.8 6.8 6.1 4.1 4.1 3.6	0.9 2.3 3.6 3.9 2.4 1.6 0.5	2-8 6-3 ICAT 5A3A EXTB ACTY 18-0 12-5 10-6 10-5 11-2 10-3 8-6 7-2	5A6A NMAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1-15 0.74 0.76 0.85 1.47 1.31	8D3 CA TO MG 7-2 8-0 4-5 2-5 1-8 2-0 2-4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39 41 49 52 50	4.4 4.3 5C1 NHAC PCT 44 21 42 55 65
34-279 00-17 CM 00-17 17-25 25-46 46-73 73-96 96-144 44-184 84-234 34-279 00-17	37 1 0RGANIC 6A1A ORGN CARB PC T 2-25C 0-79 0-35 0-19 0-04 0-04 0-03 0-02 2-14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N 14 13 13 12 12 13 13	16 TR IRON 6C2B EXT FE PCT 1.1 1.1 1.1 1.8 1.9 1.5 1.4	35 2 PHOS TOTL PCT	7 (E) 6NZE CA (4.3 1.6 0.9 1.0 2.4 2.5 2.4 2.8 SALT 8D5	51 2 CTR ACZD NG 0.6 0.2 0.2 0.4 1.6 1.6 1.2	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ASES 96 602B K MEQ 0-1 0-2 0-3 0-2 0-2 0-2 0-1	SUM EXTB / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA CG	0.9 2.3 3.6 3.9 2.4 1.1 0.5	2-8 6-3 (CAT 5A3A EXTB ACTY 	5A6A NMAC) i1.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1.15 0.94 0.74 0.76 0.85 1.47 1.31	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0 2.4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5-1 4-8 (BASE 5C3 EXTB ACTY PCT 29 16 39 41 49 52 50	4.4 4.3 5C1 PCT 44 21 42 55 65 65 65 67
34-279 00-17 CM 	37 1 06A1A 0RGN CARB PCT 2.25C 0.79 0.35 0.19 0.04 0.03 0.02 2.14 SATURM BEI E REST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N C/N 144 133 12	16 TR IRON 6C2B EXT FE PCT 1-1 1-1 1-1 1-1 1-8 1-9 1-4	35 2 PHOS TOTL PCT	7 (E) 6N2E CA (4-3 1-6 0.9 1-0 2-4 2-5 2-4 2-8 2-4	51 2 CTRACT 6020 MG 0.6 0.2 0.2 0.4 1.6 1.0 4 1.0	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ASES 96 602B K MEQ 0-1 0-2 0-3 0-2 0-2 0-2 0-1	SUM EXTB / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12-8 10-5 9-3 8-8 6-1 4-1 4-1 3-6 SATURI 6PIB NA	0.9 2.3 3.6 3.9 2.4 1.6 0.8 1.1 0.5	2-8 6-3 ICAT 5A3A EXTB ACTY 18-0 12-5 10-6 10-5 11-2 10-3 6-6 7-2 XTRAC1 61 1A CO3	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1.15 0.94 0.78 0.76 0.85 1.47 1.31 1.34	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0 2.0 2.4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 16 39 41 49 52 50 ATTERB 4F1 LQIO	SAYSCL NHAI
34-279 00-17 CM 00-17 17-25 25-46 46-73 73-96 96-144 44-184 84-234 34-279 00-17 CM	37 1 56A1A ORGN CARB PCT 2-25C 0-79 0-35 0-19 0-04 0-03 0-03 0-03 0-03 8-14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N 14 13 13 12 12 13 13	16 TR IRON 6C2B EXT FET 1-1 1-1 1-1 1-1 1-8 1-9 1-5 1-4 1-4	35 2 PHOS TOTL PCT	7 (E) 6N2E CA (4.3 1.6 0.9 1.0 0.4 2.5 2.4 2.8 2.4 SALT 8D5 TOTL	51 2 CTR ACT 6020 MG 	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1	SUM EXTB / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12-8 10-5 9-3 8-8 6-1 4-1 4-1 3-6 SATURI 6PIB NA	0.9 2.3 3.6 3.9 2.4 1.6 0.8 1.1 0.5	2-8 6-3 ICAT 5A3A EXTB ACTY 18-0 12-5 10-6 10-5 11-2 10-3 6-6 7-2 XTRAC1 61 1A CO3	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1.15 0.94 0.78 0.76 0.85 1.47 1.31 1.34	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0 2.0 2.4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 16 39 41 49 52 50 ATTERB 4F1 LQIO	SAYSCL NHAI
34-279 00-17 CM 00-17 17-25 46 46-73 73-76 96-144 44-184 84-234 34-279 00-17 CM 00-17 17-25	37 1 DRGANIC GANA ORGN CARB PC T 2-25C 0-79 0-35 0-19 0-04 0-04 0-03 0-02 2-14 SATURA BEI E REST OMM- CM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N 14 13 13 12 12 ASTE) ASTE	16 TR IRON 6C2B EXT FE PCT 1.1 1.1 1.1 1.8 1.9 1.5 1.4	35 2 PHOS TOTL PCT	(E) 6N2E CA (4.3 1.6 0.9 1.0 2.4 2.5 2.4 2.8 2.4 SALT SOLT SOLD	51 2 CTR ACT 6020 MG 	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ASES 58 6028 KMEQ 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1	SUM EXT6 / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12-8 10-5 9-3 8-8 6-8 6-8 4-1 4-1 3-6 SATURI 6PIB NA	0.9 2.3 3.6 3.9 2.4 1.6 0.8 1.1 0.5	2-8 6-3 ICAT 5A3A EXTB ACTY 18-0 12-5 10-6 10-5 11-2 10-3 6-6 7-2 XTRAC1 61 1A CO3	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1.15 0.94 0.78 0.76 0.85 1.47 1.31 1.34	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0 2.0 2.4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39 41 49 52 50 ATTERS 4F1 LQIO LMIT PCT	SAY SC1 NMAC ACCORD SC1
34-279 00-17 CM 00-17 17-25 46-73 73-96 46-73 73-96 46-184 84-234 34-279 00-17 CM 00-17 CM 00-17 17-25	37 1 06A1A 0RGN CARB PCT 2.25C 0.79 0.35 0.19 0.04 0.03 0.02 2.14 SATURM BEI E REST	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N 14 13 13 12 12 ASTE) ASTE	16 TR IRON 6C2B EXT FET 1-1 1-1 1-1 1-1 1-8 1-9 1-5 1-4 1-4	35 2 PHOS TOTL PCT	7 (E) 6N2E CA (4.3 1.6 0.9 1.0 0.4 2.5 2.4 2.8 2.4 SALT 8D5 TOTL	51 2 CTR ACT 6020 MG 	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1	SUM EXTB / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12-8 10-5 9-3 8-8 6-1 4-1 4-1 3-6 SATURI 6PIB NA	0.9 2.3 3.6 3.9 2.4 1.6 0.8 1.1 0.5	2-8 6-3 ICAT 5A3A EXTB ACTY 18-0 12-5 10-6 10-5 11-2 10-3 6-6 7-2 XTRAC1 61 1A CO3	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1.15 0.94 0.78 0.76 0.85 1.47 1.31 1.34	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0 2.0 2.4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39 41 49 52 50 ATTERS 4F1 LQIO LMIT PCT	4.4.3 5C1 NHAC PCT 44.23 14.25 55.50 65.50 ERG 4F2 INOX
34-279 00-17 CM 00-17 17-25 46 46-73 73-76 96-144 44-184 84-234 34-279 00-17 CM 00-17 17-25	37 1 DRGANIC GANA ORGN CARB PC T 2-25C 0-79 0-35 0-19 0-04 0-04 0-03 0-02 2-14 SATURA BEI E REST OMM- CM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 C/N 14 13 13 12 12 ASTE) ASTE	16 TR IRON 6C2B EXT FE PCT 1.1 1.1 1.1 1.8 1.9 1.5 1.4	35 2 PHOS TOTL PCT	(E) 6N2E CA (4.3 1.6 0.9 1.0 2.4 2.5 2.4 2.8 2.4 SALT SOLT SOLD	51 2 CTR ACT 6020 MG 	ABLE B 6P2B NA 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ASES 58 6028 KMEQ 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1	SUM EXT6 / 100 5.2 2.0 1.3 1.7 4.4 4.2 3.9 4.5 3.6	6HIA BACL TEA 12-8 10-5 9-3 8-8 6-8 6-8 4-1 4-1 3-6 SATURI 6PIB NA	0.9 2.3 3.6 3.9 2.4 1.6 0.8 1.1 0.5	2-8 6-3 ICAT 5A3A EXTB ACTY 18-0 12-5 10-6 10-5 11-2 10-3 6-6 7-2 XTRAC1 61 1A CO3	5A6A NHAC) 11.4 8.8 8.0 8.2 10.5 7.6 6.9 7.6 5.5	801 NHAC TO CLAY 1.15 0.94 0.78 0.76 0.85 1.47 1.31 1.34	8D3 CA TO MG 7.2 8.0 4.5 2.5 1.8 2.0 2.0 2.4	SF1 SAT NHAC PCT 38 18 11 12 23 33 35 37 44	5.1 4.8 (BASE 5C3 EXTB ACTY PCT 29 16 12 16 39 41 49 52 50 ATTERS 4F1 LQIO LMIT PCT	4.4 4.3 5C1 NNAC PCT 44 23 16 21 42 55 57 59 69

000-17

⁽A) COMPOSITE OF SEVERAL SURFACE SAMPLES.
(1) MICRO-PENETRATION RESISTANCE -A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10-BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) ANDMOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENTH.

(C) ORGANIC CARBON IS 8 KG/M SQ TO A DEPTH OF 1 M (6A).

(D) DETERMINED BY SOIL MECHANICS LAB - SCS., LINCOLN, ME.

Soil classification: Typic Glossoboralf; coarse-loamy, mixed. Soil: Marathon.

Soil No.: S70WI-37-3-

of intersection of Thornapple and County Highway 0.

Climate: Humid continental; mean annual temperature is about 43° F; mean annual precipitation is about 30 inches;

and frost-free season is about 133 days.

Vegetation and land use: Original vegetation was mixed hardwood and pine forests. Large areas of this soil are used for general farming. Principal crops are corn, small grain, and forages.

Parent material: Asolian silt loam and very fine sandy loam over disintegrated and weathered granite.

Physiography: Rock-controlled uplands.

Topography: Site is on an east-facing convex slope of 5 percent.

Drainage: Well drained. Ground water: Deep.

Erosion: None to slight accumulation.

Permeability: Moderate.

Described by Paul H. Carroll.

(Colors are for moist soils unless otherwise stated)

Ap 70L883 0 to 17 cm (0 to 7 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; moderate fine subangular blocky structure; friable; many fine fibrous roots; 1 to 2 percent by volume of fine gravel from disintegrated granitic bedrock; neutral; abrupt smooth boundary.

A2 70L884 17 to 25 cm (7 to 10 inches). Brown (10YR 5/3) silt loam marginal to silt; weak fine platy structure; friable; common fine fibrous roots; 1 to 2 percent by volume of fine gravel from disintegrated granitic bedrock; medium acid; abrupt smooth boundary. (See Remarks)

A&B 70L885 25 to 46 cm (10 to 18 inches). Brown (10YR 5/3) silt losm marginal to silt (A2); weak thin platy structure; very friable; occupies about 80 percent of the horizon and completely surrounds or tongues into remnants of underlying Bt; brown (7.5YR 5/4) and dark brown (7.5YR 4/4) silt losm (Bt); weak fine subangular blocky structure; friable; common fine fibrous roots; few thin clay films on faces of peds in Bt remnants and in some pores; 1 to 2 percent by volume of fine gravel from disintegrated granitic bedrock; very strongly acid; clear wavy boundary. (See Remarks)

REAR 701.886 46 to 73 cm (18 to 29 inches). Dark yellowish brown (10YR 4/4) and dark brown (7.5YR 4/4) silt loam (8t); moderate medium subangular blocky structure; friable; occupies about 60 percent of the horizon and consists of upward extensions of the underlying Bt horizons; common thin clay films on faces of peds and in tubular peres; tongues of brown (10YR 5/3) silt loam marginal to silt (A2); weak thin platy structure; very friable; few fine fibrous roots; 1 to 2 percent by volume of fine gravel from disintegrated granitic bedrock; very strongly acid; clear wavy boundary. (See Remarks)

IIB2t 70L887 73 to 96 cm (29 to 38 inches). Dark brown (7.5YR 4/4) and brown (7.5YR 5/2-5/3) very gravelly sandy loss: wesk madium subspecial blocks atructure: first many thin dark brown (7.5YR 3/2) also files on faces of

pubbles and as bridging of sand grains; 70 to 80 percent by volume of fine angular and subangular gravel from disintegrated granitic bedrock; very strongly acid; clear wavy boundary.

IIB3: 70L888 96 to 144 cm (38 to 57 inches). Dark brown (7.5YR 4/4), strong brown (7.5YR 5/6-5/8) and yellowish red (5YR 5/6-5/8) very gravelly sandy losm; weak coarse subangular blocky structure; firm; common thin dark brown (7.5YR 3/2) clay films on faces of pebbles and as bridging of sand grains; 80 percent by volume of fine angular and subangular gravel from disintegrated granitic bedrock; strongly acid; gradual wavy boundary.

IICl 701889 144 to 184 cm (57 to 72 inches). Strong brown (7.5YR 5/6-5/8) loamy fine angular and subangular gravel from disintegrated granitic bedrock; weak coarse subangular blocky structure; firm; common thin dark brown (7.5TR 3/2) clay films on faces of angular and subangular pebbles at upper boundary, becoming fewer with depth; strongly acid; gradual wavy boundary.

IIC2 70L890 184 to 234 cm (72 to 92 inches). Strong brown (7.5YR 5/6-5/8) fine angular and subangular gravel from disintegrated granitic bedrock; massive; slightly acid; gradual wavy boundary.

IIC3 70L891 234 to 279 cm (92 to 109 inches). Strong brown (7.5YR 5/6-5/8) fine angular and subangular grave

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, WISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

EDIL NC			- S74M)	-83-2		COUNTY		OCON.	TO					L	INCOLN	, NEBRA	SKA		
ENERAL										. 74L8	72-741	.877							
 DEP TH	HORI	ZON	CAND	C ** *	ć1 AV	FINE CLAY LT .0002	(SAND -	ENEC		T 2MM	-SILT-	3ALA.	3A1B	INTR	FINE	NON-	RAT: 8D: 15- BA
CM			f						PL	1 LI 26						~ ~ ~)	PLI	PCI	CLA
00-018 18-036 36-05C 50-084 64-100	CAP CA2 CA3 CA4					·													
100-15C	2C		91.1	7.3	1.6		.5	7.5	27.4	42.8	12.9	6.0	1.3		78.2				
CM	PARTI VGL. GT 2	CLE S	75-20	LYSIS - WE 20-5	, MM, IGHT - 5-2	36, 38) LT .074	20-2 PCT)(BUI } 4A10 1/3- BAR 6/CC	LK DEN: 4AlH OVEN DRY G/CC	SITY) 401 COLE	(WAT 481C 1/3- 8AR PCT	ER COI 482A 15- BAR PCT	NTENT-		CARBO 6E1B LT 2 PCT	MATE	(PF	4 - 5
																		5.9	
18-036 36-050	C	0	0	000	0 C		0 0	.30 .28	.76 .78		261 312 347	246 287 321	91.7 81.0	- 51 - 65				5.9 5.9 5.9	5
00-012 118-036 136-050 150-084 184-100	0	0	Ö	Ğ	Ĉ 1		0 2	.25	.77		370	339	72.7 1.1	.74				5.7 6.3	5
EPTH (C	DRGANI 6A1A	C MAT	TER) C/N	IRCN 6C2B		6N2 E	602D	6P2B	6Q2B		6HIA	661E	SABA	5A 6A	8D 1	RATIO 8D3	5F1	5C3	5C
	CARR	NITG PCT		FF		(EXTB	TEA	EXT	ACTY		TO	CA TC MG	NHAC		
000-018 018-036 018-050 036-050 050-084 084-100	41.9 39.1 37.6	2.55 2.26 1.95	16 17 19			125 126 128	26.4 26.6 30.1	.2 .2 .3	.7 .3 .1	152 153 159	42.7 49.9 63.9		195 203 222	140 146 145		4.7 4.7 4.3	89 86 88	78 75 71	1 1 1
DEPTH (SATUR 8E1	ATED :	PASTE) 8A H2G	NA SD2	NA 5E	805	GYP 6F1A	f	6N1B CA	601B	SATURA 6P1B	ATION 601B	EXTRAC 611A CO3	-1A8 T AJLA	6K1A	6L1A)	ATTER!	BERG 4F2 PLS

CCO-018 018-036 C36-050	750 1300 1700	5.7 2 5.8 2 6.0 4	81	21	00 00 00	1.	45	9.8 5.3	1.4	.4 .3 .3	.6	0	1.2	.2	5.4 3.4 4.3	30.0 12.0 3.6	
050-084 C84-1GC 100-150	1600 620 2400	5.8 4 4.4 3 6.9	84	110	100 100 190	2.	99 2	8.0 1	4.0 7.0 3.9	.3 .4 .3	.O TR TR	0	.6 .9 .9	.5 .2 .5	8.9 47.0 32.6	1.9 .0 .0	
 CEPTH	(8F MINL CCNT	(STATE 8 (FIBER UNRD		ECOMPOS IT ION) 8H	STOSO PH 8C1E -01M CACL	(BULK 4A3A FILD STAT	CTERI: DEN) 4A1I 1/3B RENT G/CC	ZATION COLE 401 RE- WET	SUBS RES- IDUE PCT	(N 484 FILD STAT PCT	ATER C 481C 1/38 RENT PCT	ONTEN 482 15- BAR PCT) 1) 461 WRD CM/ CM				
CM	PCT	PCT															
CM 000-018 018-036	29 30 19	23A 12 30	3	7.5YR 2/2 10YR 2/2 10YR 4/2	5.8 5.9 5.9	.29 .32 .20	.34	.31 .24	76 84 90	179 203 393	196 173	77.5 73.1 65.2	.42 .44				

Soil classification: Terric Borosaprists; sandy or sandy-akeletal, mixed, euic.

Series: Markey-

Pedon No.: S74WI-83-2 .

Location: Oconto County, Wisconsin; NWs, SWs, Sec. 26, T. 29 N., R. 20 E.; 300 feet east of U.S. Highway 141

and 75 feet north of drainage ditch. About 45.00 north latitude and about 88.00 west

longitude.

Climate: Humid continental. Mean annual temperature is 44.9° F mean July temperature is 70.9° F mean January temperature is 18.6° F.; mean annual precipitation is 27.05 inches with nearly two-thirds

of the precipitation falling during the growing season; total amount of snowfall is 39.8 inches;

the growing season averages 133 days, but less in organic soil areas. (Data from Oconto,

weather bureau substation.)

Parent material: Deposits of herbaceous organic material 16 to 50 inches thick over sandy mineral deposits.

Physiography: Level glacial depression along a major drainageway.

Vegetation: Area sampled was in potatoes. Native vegetation was white cedar.

Size of area: About 200 acres.

Distance to adjacent mineral soil: About 200 feet to the west is a sand island.

Depth to water table: 76 cm.

Microrelief: None.

Subsidence: Estimated as moderate.

Soil temperature: Measured soil temperature at 15.5° C at 50 cm.; 13.7° C at 70 cm.

Described and sampled by: G.W. Hudelson, W.C. Lynn, W.E. McKinzie, H.E. Lorenz, G.B. Lee, and A.J. Klingelhoets on August 6, 1974. Samples were obtained from a pit.

Oap 74L872 0 to 18 cm. Black (7.5YR 2/1) broken face, rubbed or pressed sapric material; about 5 percent fibers undisturbed, less than 1 percent rubbed; weak medium and fine subangular blocky structure parting to weak fine granular structure; very frisble; fibers primarily herbaceous, about 20 percent mineral soil material; common fine roots; pH 8.0 (Truog); abrupt smooth boundary.

Oa2 74L873 18 to 36 cm. Black (7.5YR 2/1) broken face, rubbed, or pressed, sapric material; about 10 percent fibers undisturbed, less than 5 percent rubbed; weak fine subangular blocky structure; very friable; fibers primarily herbaceous; about 25 percent mineral soil material; common fine roots; pH 7.5 (Truog); clear smooth boundary.

Oa3 74L874 36 to 50 cm. Black (7.5YR 3/1), black (10YR 2/1) rubbed or pressed, sapric material; about 25 percent fibers, less 5-10 percent rubbed; weak moderate subangular blocky structure; fibers are primarily herbaceous, about 10 percent cedar wood fragments; about 25 percent mineral soil material; few fine roots; pH 7.5 (Truog); clear smooth boundary.

Oa4 741875 50 to 84 cm. Very dark brown (7.5YR 3/2), black (7.5YR 2/1) rubbed or pressed sapric material; about 20 percent fibers, less than 5 percent rubbed; weak coarse platy structure; fibers primarily herbaceous with thin less than 1/4 inch thick medium and fire and less than 2/2 representations.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S74WI-83-4

CCUNTY - - - OCONTO

GENERAL METHODS- - -14.1818.2A1,28

SAMPLE NOS. 74L884-74L890

GENERAL	METHO	02	-1A, 1	818,2A	1,28			SAMP	LE NOS	. 74L8	84-74L	90							
DEPTH	HOR I	ZON				FINE									3A18			1	
			SAND	SILT	CLAY	CLAY	VCCS	CODE	MEDC	ENEC	VENC	COST	EMCT	VEST	SAMO	. 11	CLAY	C03-	15-
			2- •05	.002	-00	2 -000	2 1	1-	.25	.25-	.05	.02	-02	.002	.10	.02	CLAY	CLAY	TU
ÇM			(PC	T LT 2	4M						PCT	PCT	CLAY
000-023	CAP																		
C23-C43 C43-C58	CAZ		41.0	49.1	9.1	1	.6	7.4	11.6	12.9	0.0	17.0	31.3		31.9				
058-086	CAS		41.0	47.1	74.				1140	12.7	747	****	31.3		31.47				
086-089	CCN:		50.8	47.8	1.4	•	1.4	12.1	12.1	15.1	10.1	9.1	38.7		40.7				
C89-104 104-152			96.7	2.2	1.1	ı	-1	13.6	36.9	35.0	11.7	2.2	TR		85.0			• .	
						38, 38) (BU	LK DEN	SITY	·	WAT	ER CO	NTENT-) CARB	DNAT E	(~ -PI	1)
	VCL.	(WE	IGHT -) 4A1D	4AlH	401	481C	481C	482A	4C1		6E18	BALA	8C1A	BC1E
	GT 2	GT 75	75-20	0 20-5	5-2	LT 4074	20-2 PCT	I/3- BAR	DRY	COLE	1/10 Bar	1/3- BAR	15- 8AR	WRD CM/		LT Ž	.002	1/1 H20	1/2 CACL
CM	₽ PCT		<u></u>		LT 75		-				PCT	PCT	PCT			PCT			
													- 						
COC-023	TR	Q	0	Ģ	TR O		TR	.49	.77 .55		146 383		53.3 81.4	-46				5.0 5.0	4.6
023-043 043-058 058-086 086-089	ő	Ö	ŏ	0	G		ů	.59	. 65		131		42.4	.53				6.5	6.1
058-086	Q		. 0	. 0	0		0	-20	+66		437	421		.70				5.9	5.6
086-085 089-104	ç	G	. ö	Ö	Ç		0	-16	.56		560	534	47.3 66.7	. 79				7.4	7.3 5.1
104-152	TR	Ġ	0	TR	TR		TR						1.0					6.3	5.9
CEPTH (DR GAN IC	MAT	 TER)	IRGN	PHGS	(E	XTRACT	ABLE BA	ASES 5	B4A	ACTY	AL	(CAT	EXCH)	RATIO	RATIO	ÇA	(BASE	SATI
•	6Ala	681A	C/N	6C2B		6N2E	602D	6P 2B	6Q28		6H1A	6G1 E	5A3A				5F1		
	CRGN CARB	MI 16	*	FE	. Teru	. CA	#G	NA.	ĸ	EXTB	TEA	EXT	ACTY	NHAC	TO		SAT	EXTB ACTY	NHAC
CM	PCT			PÇT		(0 / 100						MG	PCT	PCT	PCT
000-023	34.2	2.14	16			40.6	12.9	.1	1.5				137	90.9		3-1	45	40	61
000-023 023-043 043-058	41.9	2.76	15			40.3	12.3 2.4	•1	9	53.6	110.0		164	160		3.3	40	33	54
058-086	1.07	-314				91.2			1.2	106	22.0		172	104		7.2	88	61	101
086-089	10.6	- 549	9 19				-6	•2	. 5		10.7			70 /			5		
089-104 104-152	32.5	1.68	. 19			45.7	11,2	• >	**	30.2	C7+U	-	142	79.6		4-1		•	73
DEPTH (KA		GYP	(SATURA	ATION (EXTRAC	7 6A1-)	ATTER	ERG
DEI 111	8E1 6		8A	50 Z	5E	8D 5	6F1A	6A1A	6N1B	6018	6PlB	6Q1B	6ILA	6J1A	6KlA	6L1A	6M1A	4F 1	4F2
	REST OHP-	PH	H20	ESP	SAR	TOTL SOLU		EC MMHOS/	ÇA	MG	NA	K	C03	HCD3	CL	\$04	NU3	LGIC	
CH	CM		PCT	PÇT		PPM	PCT	CH (- MEQ /	/ LITE	R			:		
CGC-023			219			2400		1.86	8.6	6.8	.1	1.9	0	. 6	. 5	.6	14.6		
023-043	2100	4.5	360			2400 2100 610 2000 890		-94	4.5	3.2	.1	• 7	0	0	.2		5.7		
043-058 058-086	2600	7.4 5.6	669			2000		.74 .51	5.2 2.9	•2	:2	.6	ŏ	.3	.5	1.5 .8	3.7 1.5		
C86-089	2200	7.4	214					-94	5.8	TR	-2	•5	ō	4.0	1.0	.6	2.0		
089-104 164-152	3000	4.9	664			1800		-49	2.3	1.2	.3	• 5	0 0 0 0		1.0	1.2	.9		
DEPTH	(-HISTC	SOL CH	ARACTE	IZAT I)N				:					
	8 f	(STAT	TE OF (DECOMP	OSITIC Am	N) PH 8C11	(BU F 4A3	LK DEN: A 4A1	COLI	E SUB:	5 (** * 484	WAIER	CONTE:	NI	{				
	KINL	(F10)	EK AOF) PYRO	PHOSPH	fT .01	M FIL	D 1/31	B RE-	RES-	• FILC) 1/3	B 15.	- WRE)				
CM	CCNT	UNRI		SOLU			L STA G/C	T REWI		I DUI					7				
															 L				
CCO-023 023-043	47 18	16 22	4 3		R 3/2 R 3/2	5.0 4.9	.4			88 96		115 199	51. 60.						
043-058	81	5	1			7.4	. 5	1 .62	2 .02		111	120	34.	5 .53	3				
058-086 08 6- 089	20	36 20	2 1	7.5Y	R 4/2	6.1 7.5		0 -29	.32	89	419	250	71. 32.		£				
089-104	35	32	ŝ	7.5Y	R 4/2	5.0		7 .20	.29	61	415	284	47.	6 .6	2				
104-152													•	5					
			-						,,,, ,		· 								·

Soil classification: Terric Borosaprist; ferrihumic, euic.

Series: Markey, bog iron variant.

Pedon No.: S74WI-83-4.

Location: Oconto County, Wisconsin; SW4, SE4, Sec. 4, T. 30 N., R. 18 E., 250 feet east (opposite machine shed) of farm lane. About 45.1 north latitude and about 88.2 west longitude.

Climate: Humid continental. Mean annual temperature is 43.40 F; mean July temperature is 69.60 F mean January temperature is 15.60 F; mean annual precipitation is 27.94 inches with nearly two-thirds of the precipitation falling during the growing season; total amount of snowfall is 47.9 inches; the growing season averages 119 days, but less in the organic areas (data from Crivitz High Fall, WI weather bureau substation).

Parent material: Deposits of herbaceous organic material 16 to 50 inches thick over sandy mineral deposits.

Organic material contains limonite layer.

Physiography: Large glacial lake basin with many scattered sand "islands." Vegetation: Area sampled was in potatoes and Cris variety of spring wheat.

Size of area: About 500 acres.

Distance to adjacent mineral soil: 300 feet to west.

Depth to water table: 120 cm.

Microrelief: None.

Subsidence: Estimated as moderate.

Soil Temperature: Measured soil temperature was 14.0° C at 60 cm and 10.0° C at 110 cm.

Described and sampled by: G.W. Hudelson, W.C. Lynn, W.E. McKinzie, H.E. Lorenz, G.B.Lee, and A.J. Klingelhoets on August 6, 1974. Samples were obtained from pit.

Oap 74L884 0 to 23 cm. Black (10YR 2/1) broken face, rubbed, pressed sapric material; about 10 percennt fiber, less than 5 percent rubbed; weak coarse subangular blocky structure and weak fine granular structure; very friable; fibers primarily herbaceous; about 20 percent mineral soil material; many roots; ph 5.5 (Truog); abrupt smooth boundary.

23 to 43 cm. Black (10YR 2/1) broken face, rubbed, or pressed sapric material; shout 74L885 15 percent fiber, less than 5 percent rubbed; weak coarse prismatic structure parting to weak medium subangular blocky structure; friable; fibers primarily herbaceous; about 25 percent mineral soil material; common roots; pH 7.0 (Truog); abrupt wavy boundary.

43 to 58 cm. Strong brown (7.5YR 5/6 & 5/8) limonite; massive; firm; few roots; moderately 74L886 Cenl alkaline, violent effervescence; abrupt wavy boundary.

58 to 86 cm. Black (10YR 2/1) broken face and rubbed, very dark brown (10YR 2/2) pressed

herbaceous; about 20 percent mineral soil material; pH 6.0 (Truog); clear amouth boundary.

86 to 89 cm. Dark yellowish brown (7.5YR 4/4) limonite; massive; firm; moderately alkaline, violent effervescence; abrupt wavy boundary.

74L889 89 to 104 cm. Dark brown (7.5YR 3/2), black (7.5YR 2/1) rubbed or pressed sapric material;

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - \$70WIS-37-2

DEPTH (SATURATED PASTE) NA

COUNTY - - - HARATHON

	GENERAL	ME THO	10 S	-1A , 16	18,2A	l • 28			SAMPI	LE NOS.	70L87	70-70L	8 02								
	DEPTH	HORI	ZON	SAND 2- +05	SILT .05- .002	CLAY LT .002	FINE CLAY LT .0002	vcos	CORS	E SIZE SAND - MEDS .5- .25	FNES .25- .10 LT 2	VFNS -10- -05	COSI .05	3A 1. SILT- FNSI .02 .002	3A1A,) VFSI .005-	JA18 - FAML TEXT SAND 21	INTR II .2-	FINE CLAY TO CLAY PCT) NON-	RATIO 801 15- Bar TO	
	nne se	463		<u>,</u>		,, ,										. ,		-			_
<u>-</u>		j÷	. F																		
		, r 			- -,	_										ı <u> </u>					_
,	1 																				
	_																				_
																					_
	025-35 035-50 050-67 067-90 090-123 123-162 162-196 196-237 237-267 287-370	283T 2C1 2C2 2C3 2C4	21T T	10.9 19.6 47.9 52.7	68.8 60.9 36.4 29.5 24.5 19.1 19.1	15.9 20.3 19.5 15.7 17.8 18.1 7.6 5.0 2.9	4.9 8.6 8.4 13.0 12.0 4.6	.1 .6 3.8 2.7 5.9 13.5 15.3	.7 2.2 7.0 7.1 10.5 18.1 25.6 24.3	1.3 1.3 3.2 10.9 12.7 12.6 13.2 10.4 11.6	2.0 1.7 4.4 14.6 20.1 19.4 20.1 20.0	7.1 7.1 9.2 11.6 10.1 9.0 8.7 11.0	40.2 40.2 37.4 22.8 16.2 11.5 9.4 10.3 8.6 7.9		Ī	3.8 10.4 36.3 42.6 48.4 64.6		42 43 73 66		.44 .42 .42 .42 .41 .46 .78 1.06	
	DEPTH	(PART I	CLE SI 1 GT 75	ZE ANA	- WE! 20-5	MH, 3 IGHT - 5-2	8, 381 LT -074	20-2 PCT	4A1D 1/3- BAR	K DENS	401	(WATE 481¢	R COI 482 15- 8AR PCT	AC1 WRD CM/ CM		CARBO		8C1A 1/1 H2O		
	000-15 015-25 025-35 035-50 050-67 067-90 090-123 123-162 162-196 196-237 237-287 287-370	2 TR 8 21 21 TR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TR O O O O TR TR O O O TR	TR TR O TR TR 2 1 1 TR TR TR TR O	TR TR TR TR TR 1 2 1 2 1 11 27 28 TR	93 94 95 95 88 60 52 45 31 26 15	TR TR TR TR 3 2 3 1 11 29 30 TR	1.34 1.50 1.49 1.50 1.708 1.76 1.808 1.808 1.73 1.706	1.97	.014 .018 .027 .023 .019	17.2		7.4 7.1 7.0 8.5 6.6 7.3 8.3 5.9 5.3 3.2 4.1	.28 .31 .25 .23 .20	3.6C 3.6C 3.0C 2.5C 2.6C 2.6C			4.98 4.65 4.59 5.45 5.55 6.55	4.5 4.5 4.2 4.1 4.0 4.4 4.7 4.7 5.2 4.3	
	DEPTH (ORGANI 6A 1A ORGN CARB PC T		ER)		PHOS TOTL	6HZE CA	TRACTA 6020 MG	BLE BA 6P2B NA	4028 6028 K	SUM EXTB	ACTY 6HIA BACL TEA		CAT SA 3A EXTB ACTY	EXCH) 5A6A NHAC	RATIO 8D1 NHAC TO	RATIO 8D3 CA TO	CA 5F1 SAT NHAC PCT	(BASE 5C3 EXTB ACTY PCT	SAT) SC1 NHAC PCT	
	000-15 015-25 025-35 035-50 050-67	1.61 0.31 0.20 0.15	.173 .156 .037 .027	10	0.9 1.0 1.1 1.3 1.2		5.7 5.7 5.8 6.4 6.1	0.9 0.9 1.2 1.7 1.9	0.3 0.2 0.2 0.2 0.1	0.2 0.1 0.2 0.3 0.3	6.9 7.4	12.2 8.0 8.3 9.8 8.8	0.4	14.9 15.7 18.4	14.1 13.8 11.6 14.1 13.3	1.17 0.73 0.69	6.3 6.3 4.8 3.8 3.2 2.9	40 41 50 45 46 48	37 46 47 47 49 56	50 50 64 61 63	
	090-123 123-162 162-196 196-237 237-287 267-370 000-25	0.07 0.07 0.03 0.03 0.02	.161	10	1.3 1.3 0.9 0.7 0.7		7.3 10.7 8.5 8.7 5.3 6.2	2.6 3.4 2.3 2.3 1.6	0.1 0.3 0.3 0.3 0.2 0.2	0.2	10.2 14.6 11.3 11.5 7.3 8.5	6.1 6.5 4.2 3.5 1.4	0.9	16.3	12.4 15.9 13.6 13.3	0.70 0.88 1.79 2.66 2.52	2.8 3.1 3.7 3.8 3.3 3.3	59 67 63 65 73 67	63 69 73 77 84 85	82 92 83 86 100 91	_

Soil classification: Aquic Glossoboralf; fine-loamy, mixed.

Soil: Milladore taxadjunct*.

S70WI-37-2. Soil No.:

Location: Marathon County, Wisconsin; SWA, Swc. 24, T. 26 N., R. 4 E., 130 feet east of fence, directly north

of elm trees.

Climate: Humid continental; mean annual temperature is about 43° F; mean annual precipitation is about 30 inches; and frost-free season is about 133 days.

Vegetation and land use: Original vegetation was mixed northern hardwoods and pine forest. Many areas have been cleared and are being used for cropland or pasture.

Parent material: Loess over residuum from highly micaceous gneissic rocks. Physiography: Nearly level to gently sloping areas in rock-controlled uplands.

Topography: Site is in a 1 percent plane slope in an idle field.

Drainage: Somewhat poorly drained.

Ground water: Deep - a perched water table occurs within 2 feet of the surface for short periods during wet seasons.

Erosion: Slight.

Permeability: Moderate.
Described by: Paul H. Carroll.

(Colors are for moist soils unless designated otherwise)

701870 0 to 15 cm (0 to 6 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak very fine subangular blocky structure: friable; many fine fibrous roots; strongly acid: abrupt smooth

boundary.

Ap2 70L871 15 to 25 cm (6 to 10 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak medium platy structure parting to weak very fine subangular blocky structure; friable; many fine fibrous roots; strongly acid; abrupt smooth boundary.

A2 70L872 25 to 35 cm (10 to 14 inches). Brown (10YR 5/3) silt loam with common fine prominent mottles of strong brown (7.5YR 5/6-5/8) and yellowish brown (10YR 5/6-5/8); weak thin platy structure; friable; common fine fibrous roots; strongly acid; clear wavy boundary. (See Remarks)

A&B 70L873 35 to 50 cm (14 to 20 inches). Dark yellowish brown (10YR 4/4) silt loam (Bt) with many fine and medium distinct and prominent mottles of strong brown (7.5YR 5/6-5/8) and few fine distinct mottles of grayish brown (10YR 5/2); weak fine subangular blocky structure; friable; thick brown (10YR 5/3) tongues of light silt loam penetrate this horizon from the A2 above and occupy approximately 70 percent of the horizon: very friable: few fine

-		
	high:	
	Agree -	
[-	1 **	11
4		De a
7		
L		
_	i F	
	<u></u>	
	\	
L		
J.L	-	
	1- p-24 *	
ŕ		
7		
_		
_		
41		
u		
(· ·

70L874 50 to 67 cm (20 to 26 inches). Yellowish brown (10YR 5/6) heavy silt loam (Bt) with many fine distinct and prominent mottles of strong brown (7.5YR 5/6-5/8) and light brownish gray (2.5Y 6/2); moderate fine and medium subangular blocky structure; friable; tongues of grayish brown (10YR 5/2) silt loam penetrate this horizon from above and occupy approximately 40 percent of the horizon; common thin clay films are on surfaces of peds and in tubular pores of the Bt portion; very strongly acid; clear wavy boundary. (See Remarks)

IIB21t 70L875 67 to 90 cm (26 to 35 inches). Dark brown (7.5YR 4/4) gravelly loam with common medium distinct and prominent mottles of strong brown (7.5YR 5/6-5/8); moderate medium subangular blocky structure; firm; common thin clay films on faces of peds and in continuous tubular pores and as clay bridging of sand grains; patchy thin coatings of uncoated silt and very fine sand on faces of some peds near upper boundary; horizon has gravel accumulation consisting of 15 percent by volume of fine subangular rock fragments 20 to 75 mm in daimeter, approximately the same amount between 2 and 75 mm diameter; very strongly acid; clear wavy boundary.

123 cm (35 to 48 inches). Dark brown (7.5YR 4/4) and dark yellowish brown (10YR 4/4) light sandy clay loam with few medium distinct mottles of strong brown (7.5YR 5/6); moderate medium and coarse angular blocky structure; firm; common thin clay films on faces of peds and in tubular pores and clay bridging of sand grains; 1 to 2 percent by volume of rock fragments 20 to 75 mm diameter, 5 to 10 percent fragments 2 to 75 mm

SOIL CLASSIFICATION-AQUIC GLOSSOBORALF COARSE-LOAMY, MIXED SERIES - - - - - - - MONICO TAXADJUNCT

GENERAL METHODS - - - 12, 1818, 241, 28 SAMPLE NOS. 72L843-72L849 DEPTH HORIZON CO3+ 15 -SAND SILT CLAY CLAY ¥CO\$ CORS HEDS PHES TPHC COST PHST **VPST** SAND II CLAY .5-TO LT -25--10-.05 .02 .005 2-CLAY BAR .05-11 2-. 10 .002 .002 0002 . 5 10 05 .02 .002 .002 .02 CLAY 70 .25 .1v CH - -PCT PCT CLAY 5,4 3,5 2,7 14.4 15.7 17.4 000-6 55.4 32.1 7.9 9.5 14.7 45.9 34.9 1.00 8.9 16.2 14.7 19.5 47.9 35.4 .48 7.5 2.0 21.6 006 - 2512 56.8 35.7 8.6 64.0 68.2 78.8 025-48 B2HIR 27.0 9.0 30 . 59 1.6 1.6 2.1 10.0 10.6 7.3 A'2 B'21 26.4 15.8 5.4 2.1 21.2 25.6 31.6 9.3 11.2 14.7 11.7 34.6 35.5 048-65 58.9 30 . 44 67.6 30 . 37 065-85 085-120 B'22T . 41 120-170 . 31 BULK DENSITY) (- - -\1D 4A1H 4D1 4B1C -WATER CONTENT-DEPTE - - -) CARBODATE (- -PH 4B2 15-481C 4C1 8C1A 8C1E 1/3-BAR URD LT 2 OVER COLE 1/10 1.7 1/2 BAR .002 H20 CACL . 074 PCT BAR BAR CH/ 75 DRY (- - - PCT LT 75 LT20 G/CC PCT CH PCT PCT . 9 12.5 4.4 4.1 000-6 TR 48 3.6 4.6 3.9 006-25 47 TR 025-48 0 41 1.3 1 1.68 .006 16.5 . 04 4.3 048-65 065-85 5 24 50 1.7 A 2.0 5.3 4.5 .008 085+120 4.0 .012 TR 120 - 170(CAT EXCH) (- - EITRACTABLE BASES 584A- -) RATIO RATIO CA 5F1 (BASE SAT) DEPTH (ORGANIC MATTER) IRON PHOS AL 5C1 6 N2 B 602D 6P2B 6Q2B 5161 641A 681A ORGN HTTG 6C 2B 6G1B 5131 5C3 C/N 6H1A 8p1 8D3 RYTH MHAC MA KCL RACL FYT EXTB #XT CARB FE / 100 PCT PCT PCT (- - --HEO G-CLAY ĦG PCT PCT PCT PCT 25.7 9.7 5.1 23 15 1,1 5.9 19.8 1.1 000-6 12.60 14 12 13 .1 1.4 6.7 . 89 006-25 .95 -082 1.0 8.3 16.3 7.0 5.2 9.2 1.02 5.0 1.3 025-48 . 95 .071 13 048-65 . 9 4.0 4.8 .89 .72 2.5 10 19 3.9 065-85 085-120 .08 . 8 TR .08 3.4 9.3 1.9 29 37 47 .01 ---- SATURATION BITRACT 841- - --) ATTERBERG NA 5D2 WA Se DEPTH (SATURATED PASTE) SALT GYP SATA 6NTE 601B 6FTB 6QTB 6FTA BC CA NG NA K CO3 6J1A 6K1A 6L1A 6H1A BCO3 CL SO4 NO3 8D5 6F1A 471 472 8E1 8C1B 81 LOID PLST EC ESP SAR TOTL CA MG HHHOS/ OHH-SOLU (+ - - - - - - - EEQ / LITER - - - - - -) PCT PCT CH CM 000+6 006-25 048-65 065-85 .12 085-120 14000 4.8 23.9 120-170 IDENTIFICATION OF THE SPODIC HORIZON BY LABORATORY CRITERIA. CEC -1/2 CLAY (CIT (PTROPHOSP) (PYROPHOSPHATE _P #10) DIT) DEPTH HORIZOE 667A PB+AL AL+C PE+AL

RXT

PE

PCT

1.3

EXT

PCT

RXT

PCT

.6

FE

B2HIR

025~48

ex t

PCT

.3

EXT

PCT

.3

CLAY

. 10

/ p

THIC

108

PR+AL

. 56

Soil classification: Aquic Glossoboralf; coarse-loamy, mixed .

Soil: Monico taxadjunct*.

Soil No.: S72WI- 21-5 (LSL Nos. 72L843-72L849) .

Location: Forest County, Wisconsin; SWx, NWx, Sec. 32, T. 38 N., R. 12 E.; near State Highway 32, Argonne Experi-

mental Forest.

Climate: Humid continental; mean annual temperature is about 41° to 45° F; mean annual precipitation is about

30 inches; and frost-free season is about 130 days.

Vegetation and land use: Natural vegetation was northern hardwoods. Most of this soil is in forest. A few small areas are cleared and used for general farming. Some wooded areas are pastured.

Parent material: Sandy loam glacial till.

Physiography: Nearly level to gently sloping areas on glacial ground moraines.

Topography: Site is on 1 percent plane slope.

Drainage: Somewhat poorly drained.

Ground water: A perched water table exists within 20 inches of the surface for short periods during wet seasons.

Erosion: Slight.

Permeability: Moderately slow.

Described by: Robert Fox and Steve Payne.

(Colors are for moist soil unless otherwise stated)

Al 72L843 0 to 6 cm (0 to 2.5 inches). Black (5YR 2/1) sandy loam; weak fine granular structure; very friable; many roots; strongly acid; abrupt boundary.

A2 72L844 6 to 25 cm (2.5 to 10 inches). Reddish gray (5YR 5/2) sandy loam; weak fine platy structure; friable; few roots; strongly acid; abrupt boundary.

B2hir 72L845 25 to 48 cm (10 to 19 inches). Dark reddish brown (5YR 3/4) sandy loam; weak fine subangular blocky structure; very friable; many fine and medium roots; strongly acid; clear boundary.

A'2 72L846 48 to 65 cm (19 to 26 inches). Reddish gray (5YR 5/2) sandy loam; weak fine subangular blocky structure parting to weak thin platy structure; friable, brittle; few fine pores; few roots; strongly acid; clear boundary.

B'21 72L847 65 to 85 cm (26 to 34 inches). Reddish brown (5YR 4/3) loamy sand with common medium prominent mottles of yellowish red (5YR 5/6) and reddish brown (5YR 5/4); weak fine subangular blocky structure; friable, brittle; about 5 percent fine gravel; strongly acid; clear boundary.

B'22t 72L848 85 to 120 cm (34 to 48 inches). Yellowish red (5YR 4/6) sandy loam with many medium and large prominent and distinct mottles of grayish brown (10YR 5/2) and yellowish red (5YR 5/6); weak fine platy structure; friable; about 5 percent fine gravel; strongly acid; clear boundary.

721849 120 to 170 cm (48 to 68 inches). Reddish brown (5YR 4/3) sandy losm; massive; very friable, brittle, weakly cemented; about 5 percent fine gravel and about 10 percent medium gravel; strongly acid.

Ramarks: The surface is covered by a thin layer, about 2 cm thick, of partially decomposed leaves and twigs from the timber growing in the area. The microrelief is hummocky with considerable tree throw in the vicinity of the sample. There are a few stones on the surface and some boulders up to 3 feet in diameter.

This pedon has an argillic horizon; therefore it is a taxadjunct to the Monico series.

549WI-10	6-1			Ве	ltsvi.	lle So	il Sur	vey La	b. Nos	. 499	82-49	989						
				1.E./100	Grams	So11							Si	se Cla	ases \$			
Depth cm	Horizon	Ca	Mg	K	· Na.	Hl	s ₊ 2	≸ B. SAT	pH	% 0.c.	Clay	1113	USDA Silt	VFS	FS	MS	, CS	vcs
0-5	Al.	4.9	0.9	0.2	0.1	15.0	21.1	29	4.7	4.44	3,1	4.5	8.7	2.6	29.0	31.4	20.0	5.2
5-10	А3	1.0	0,3	0.1	<0.1	5.0	6.4	22	5.2	0,95	4.2	5.8	10.5	3.5	32,1	30,3	16.9	2.5
10-28	B2lir		-		-		-	_	5.4	0.37	4:4	4.8	8.3	2.8	31.4	30.8	18.3	4.0
28-50	B22ir	0.6	0.2	0.1	< 0.1	2,1	3.0	30	5.3	0,12	4.3	3.1	6.4	3,2	36.2	30.7	15,5	3.7
50-65	в3		_		÷				5,6	0.12	3.2,	0,2	1.4	1.8	32.0	33.0	24.2	4.4
65-88	Cl	****		_					5.8	0.07	1.8	0.0	0.0	2.2	21.8	48.5	23.0	2.7
88-100	C5	0,1	< 0.1	<0.1	<0.1	1.0	1,1	9	6.2	0.07	1.2	0,0	0.0	0.3	16.5	42.5	35,1	4.4
100-123	сз	7		-	-		_	_	6.2	0.05	1.0	0.0	0,0	1,0	20.8	40.9	32.5	3.8

¹ Acidity 2 CEC by sum of cations 3 International III - This is PSDA fine silt (.02-.002 mm).

Soil classification: Typic Udipsamment; mixed, frigid.

Soil: Omega.

Soil No.: 849WI-16-1

Location: Douglas County, Wisconsin; SW4, SE4, Sec. 24, T. 45 N., R. 11 W.; 60 feet north of County Hwy. A.

6-1/2 miles west of Bayfield County line.

Climate: Continental; mean annual temperature ranges from 36° to 44° F; mean annual precipitation ranges from 26 to 30 inches; frost-free season is 90 to 105 days.

Vegetation and land use: Most of this soil is forested with jack pine and oak being the dominant species. A few areas have been cleared and are used for general farming or special crops such as potatoes.

Parent material: Sandy acid glacial outwash. Physiography: Nearly level to hilly upland.

Topography: Nearly level plain with low ridges and swales. Gradient is 1 to 2 percent.

Drainage: Excessively drained.

Ground water: Deep. Erosion: Slight. Permeability: Rapid.

Described by: J. K. Ableiter, I.J. Nyard, R.J. Muckenhirn, and V.J. Kilmer.

(Colors are for moist conditions unless otherwise noted)

Al 49982 0 to 5 cm (0 to 2 inches). Very dark brown (10YR 2/2) loamy sand, with many light gray (10YR 7/2) sand grains; weak fine granular structure; very friable; salt-and-pepper mixture of light and dark-colored sand grains are indicative of a mixture of Al and A2 material; charcoal fragments up to 1/4 inch in diameter, bits of organic matter and wood present; many roots, along with fungi mycelia; very strongly acid.

5 to 10 cm (2 to 4 inches). Reddish brown (5YR 4/4) loamy sand, with grayish patches, light brown

B21ir 49984 10 to 28 cm (4 to 11 inches). Reddish brown (5YR 4/4) loamy sand, light reddish brown (5YR 6/4) dry; weak medium granular structure; very friable; common roots; strongly acid.

B22ir 49985 28 to 50 cm (11 to 20 inches). Yellowish red (5YR 4/6) sand, reddish brown to reddish yellow (5YR 5/4 to 6/6) dry; weak coarse granular structure; very friable; few roots; few basalt, sandstone, granite, and quartzite pebbles; strongly acid.

83 49986 50 to 65 cm (20 to 26 inches). Yellowish red (5YR 5/6) sand, reddish yellow (5YR 6/6) dry; single grained; loose; few pebbles of quartzite, sandstone and basalt; medium acid.

Cl 49987 65 to 88 cm (26 to 35 inches). Yellowish red (5YR 5/6) sand, light reddish brown (5YR 6/4) dry; weakly coherent to single grained; loose; few pebbles of basalt, sandstone, quartzite, granite, and other minerals; medium acid.

49988 88 to 100 cm (35 to 40 inches). Brown (7.5YR 5/4) sand, light brown (7.5YR 6/4) dry; single grained; loose; numerous dark-colored grains; pubbles of basalt, quartz, and granite present; medium acid.

C3 49989 100 to 123 cm [40 to 49 inches]. Brown to light brown (7.5YR 5/4 to 6/4) sand, light brown to pink (7.5YR 6/4 to 7/4) dry; single grained; loose; numerous dark-colored sand grains; few rounded pebbles of granite, quartzite, or basalt; medium acid.

SOIL SURVEY LABORATORY Lincoln, Nebraska __ LAB. Nos. 19847-19854 June, 1968 GENERAL METHODS: 1A, 1815, 2A1, 2B Size class and particle diameter (mm) 3Al Coarse fragments2A2 3B1 Sitt Fine tat. III 0.005-<0.0740.002 Clay Very fine Int. 🎞 Depth Vol. Wt. (2-1) (in.) (2-Q.Q5) 8. (0.05--0.002) (1-0.5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-0.02) (0.2-0.02) (2-0.1) (< 0.002) 19-2 19-2 53.44 0.3 76.81 0.2 1.6 10.8 6.6 Ap B&A 15.4 0-5 9.3 37.3 1.0 3.7 2.7 6.0 31.3 92.3 tr 5-9 9-13 5.7 6.0 4.4 5.0 0.5 0.8 2.0 3.0 15.2 3.5 95.9 8.3 B2t 5.0 25.1 69.9 0.1 0.4 0.9 1.8 21.9 3.2 14.9 tr 13-19 19-26 26-39 95.9 96.4 97.5 95.4 4.9 24.9 22.6 1.4 3.5 3.1 0.5 1.7 2.1 B3 70.2 0.6 0.7 22.8 14.9 tr 0.5 13.9 15.8 0.8 Clca 73.1 74.9 1.9 20.7 4.1 \mathbf{tr} 22.2 0.8 2.1 4.0 Ç2ça 2,9 0.5 0.9 21.3 0.1 tr 39-54 54-65 C3 C4 5.3 5.4 19.5 72.9 0.3 0.7 1.1 1.9 1.3 2.3 12.7 tr 95.4 19.8 0.6 3.9 22.7 71.9 0.2 2.0 1.5 2.9 5.5 tr L,

SOIL Nos. S64WI-16-1. LOCATION Douglas County, Wisconsin

SOH Ontonagon

Soil classification: Glossic Eutroboralfs; very-fine, mixed .

Soil: Ontonagon.

Soil No.: S64WI-16-1.

Location: Douglas County, Wisconsin; NWA, NWA, Sec. 17, T. 48 N., R. 13 W.; 120 feet south of Highway Z by a pine tree in an abandoned field.

Climate: Humid continental; mean annual temperature is about 41° F; mean annual precipitation ranges from 26 to 30 inches; and frost-free season is about 109 days.

Vegetation and land use: Native vegetation was mixed spruce-pine forest. A small portion is being used for general farming. Some cutover areas are in second-growth aspen.

Parent material: Calcareous clay glacial lake deposits.

Physiography: Gently sloping to undulating glacial lake plains.

Topography: Site is on a 1 percent east-facing convex slope in an abandoned field.

Drainage: Moderate to well-drained.

Ground water: Deep Erosion: Slight. Permeability: Slow.

Described by: A.J.Klingelhoets, August 25, 1964.

(Colors are for moist soils unless otherwise stated)

Ap 19847 0 to 13 cm (0 to 5 inches). Dark reddish brown, dark reddish gray, and reddish brown (5YR 3/2, 4/2, and 4/4) silty clay; moderate fine and medium subangular blocky structure; firm; much earthworm activity and mixing; roots common; slightly acid; abrupt smooth boundary.

B&A 19848 13 to 23 cm (5 to 9 inches). Reddish brown (5YR 4/4) clay; medium columnar structure parting to moderate fine angular blocks; very firm, plastic, sticky; tongues of reddish gray (5YR 5/2) silty clay A2 with weak medium platy structure extend through this horizon and constitute about 20 percent of the horizon body; isolated peds of B2 are in the unner part: clay films are thin and patchy on peds of B2: roots common; slightly acid; clear irregular

boundary.

B2t 19849 23 to 33 cm (9 to 13 inches). Reddish brown (2.5YR 4/4) clay; moderate to strong very fine angular blocky structure; very firm, plastic, sticky; clay films thin but continuous; few hard lime concretions less than 3 mm in diameter; roots common; mildly alkaline; clear wavy boundary.

83 19850 33 to 48 cm (13 to 19 inches). Raddish brown (2.5YR 4/4) clay; weak coarse prismatic structure parting to moderate to strong very fine angular blocks; very firm, plastic, sticky; clay films are thin but continuous; few hard lims concretions less than 3 mm in diameter; roots common; mildly alkaline; clear wavy boundary.

Clca 19851 48 to 65 cm (19 to 26 inches). Reddish brown (2.5YR 4/4 and 5/4) clay; moderate coarse prismatic structure parting to moderate fine angular blocks; very firm, plastic, sticky; many light brownish and pinkish-gray (10YR and 7.5YR 6/2) soft lime segregations less than 5 mm in diameter; few hard lime concretions less than 3 mm in diameter; clay films are thick and continuous on pressure faces (slickensides); few roots; strong effervescence; gradual irregular boundary.

C2ca 19852 65 to 98 cm (26 to 39 inches). Reddish brown (2.5YR 4/4 and 5/4) clay; moderate coarse prismatic structure parting to moderate medium angular blocks; very firm, plastic, sticky; many light brownish and pinkish-gray (10YR and 7.5YR 6/2) soft lime segregations less than 5 mm in diameter; few hard lime concretions less than 3 mm in diameter: clay films are thick and continuous on pressure faces (alickapaides): few roots: strong affarrancement.

clear wavy boundary.

C3 19853 98 to 135 cm (39 to 54 inches). Reddish brown (2.5YR 4/4 and 5/4) clay; weak coarse prismatic structure parting to moderate medium angular blocks; very firm, plastic, sticky; very prominent slickensides with thick clay films; strong effervescence; gradual wavy boundary.

C4 19854 135 to 163 cm (54 to 65 inches). Reddish brown (2.5YR 4/4 and 5/4) clay; weak coarse prismatic structure parting to coarse angular blocks; very firm, plastic, sticky; very prominent slickensides with thick clay films; strong effervescence.

Remarks: Sand content in profile is estimated at less than 5 percent. Clay content was estimated to be greater than 60 percent in the B and C horizons.

Soil temperature: Depth

(inches)	Temperature
20	14° C. 14° C.
30	14° C.
40	1,0 -

SOIL ___Ontonagon _____ SOIL Nos. S64WI-16-3 LOCATION Douglas County, Wisconsin SOIL SURVEY LABORATORY Lincoln, Nebraska ____ LAB. Nos. <u>1</u>9855-19862 June, 1968 GENERAL METHODS: 1A, 181b, 2A1, 2B Size class and particle diameter (mm) 3**A**1 Total Sand Coarse fragments 2A2 3B1 Srit Clay Very Medium Fine Int TIT Horizon Send Coarse Vary fine let II 0.005 Vol. Ŵt. (In.) (2-0.05) 2. (0.05-0.002) (= 0.002) coarsa (2-1) (1-0.5) (0.5-0.25) (0.25-0.1) (0.1-0.05) (0.05-0.02) (0.02-0.002) (0.2-0.02) (2-0.1) <0.002 19-2 19-2 ← Pct. of <19→ 36.1 59.3 67.7 60,8 3.1 Ap B&A tr 0.5 0.9 14.9 1.3 14.9 45.9 16.7 1.8 -0.5 28.9 6-9 1.7 39.0 0.2 0.9 0.1 10.1 11.3 99.0 0.8 9.2 9-16 16-21 B2t 31.6 0.4 0.7 tr 0.1 0.2 4.0 27.6 4.5 0.3 2.3 B3 0.8 41.1 58.1 0.1 0.1 0.2 38.8 2.8 0.6 99.3 17.1 lō.3 21-32 27.8 71.1 0.2 0.4 Clca 1.1 0.2 0.2 0.2 27.4 0.8 0.9 99.0 17.9 tr 32-39 20.0 0.6 C2ca 0.1 98.4 1.9 19.1 1.3 2.4 10.5 tr 3.2 C3 C4 78.9 0.6 39-52 17.9 0.2 0.3 2.4 15.5 3.9 97.2 8.3 tr 52-65 20.5 77.1 0.1 0.3 0.4 1.0 0.6 1.7 18.8 2.9 1.8 97.9 10.6 \mathbf{tr} 6Ala 6Bla Carbonate 3Ala 4D1 3A1b as CaCO2 4B4 4Blc Non-4Ala 4Ald 4Alb 4B2 4C1 8Cla Fine Organic Nitrogen arbon-Field-1/3-COLE Field. 1/3-td (in.) carbon <u>6Е1</u>ь Air-1/3-15-Clay 3Ala (1:1) State ate Bar Dry State Bar 15-Bar <0.002 6E2a <0.002 Clay mm. <2mm mm Pct. Pct Pct. Pct. Pct Pct. **g/cc** 32.3 28,2 0-6 3.59 0.237 1.28 0.017 15 36 1.19 1.21 13.9 0.17 12.6 6.7 59 68 28.5 27.6 6-9 0.62 0.071 9 -(s)1.36 1.39 1.71 0.073 25.8 17.2 0.12 6.4 9-16 0.39 1.70 0.073 27.4 0.12 tr(s) 7.5 Λ 1Ω

Soil classification: Glossic Eutroboralfs; very-fine, mixed.

Soil: Ontonagon.

Soil No.: S64WI-16-3 .

Location: Douglas County, Wisconsin, NW4, NE4, Sec. 25, T. 48 N., R. 14 W.; 400 feet east and 150 feet south of

junction of county roads A and C.

Climate: Humid continental; mean annual temperature is about 41° F; mean annual precipitation ranges from 26 to

30 inches; and frost-free season is about 109 days.

Vegetation and land use: Native vegetation was mixed spruce-pine forest. A small part of this soil is being used for general livestock farming. Some cutover areas are in second growth aspen forests.

Parent material: Calcareous clay glacial lake deposits.

Physiography: Gently sloping to undulating glacial lake plain.

Topography: Site is on a 1 percent south-facing convex slope of gently undulating area.

Drainage: Moderately well to well drained.

Ground water: Deep. Erosion: Slight. Permeability: Slow.

E. ******

Described by: A.J. Klingelhoets, August 25, 1964.

(Colors are for moist soils unless otherwise stated)

Ap 19855 0 to 15 cm (0 to 6 inches). Dark reddish gray, very dark gray, and dark reddish brown (5YR 4/2, 3/1, and 3/2) heavy silty clay loam; moderate fine subangular blocky structure; firm; some earthworm mixing; roots common; neutral; abrupt smooth boundary.

B&A 19856 15 to 23 cm (6 to 9 inches). Reddish brown (2.5YR 4/4) clay; weak medium columnar structure parting to moderate fine angular blocks; very firm, plastic, sticky; tongues of reddish gray (5YR 5/2) silty clay A2 with weak medium plasty structure extend through this horizon and constitute about 20 percent of the horizon body; isolated peds of B2 are in the upper portion of this horizon; clay films are thin and patchy on peds of B2; roots common; slightly acid; clear wavy boundary.

B2t 19857 23 to 40 cm (9 to 16 inches). Reddish brown (2.5YR 4/4) clay; weak coarse prismatic structure parting to moderate to strong very fine angular blocks; very firm, plastic, sticky; clay films thin and continuous; few hard lime concretions less than 2 mm in diameter; roots common; mildly alkaline: clear wavy boundary.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MYSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, MEDRASKA

SOIL NO - - - - - 572WI-21-8

COUNTY - - - POREST

GREERAL METHODS- - -1a,1818,241,28

SAMPLE WOS. 721869-721877

FIRE (PIE RORIZON (Genera:	L BETH	OD\$	12,11	81B, 211					LE FOS.										
10-6 A1 21.6 63.9 14.5 6.9 .8 4.5 7.6 5.6 3.1 31.3 32.6 18.5 36.1 88 2.06-13 A2 38.1 55.7 6.2 1.5 1.6 7.7 14.5 9.6 4.7 27.1 28.6 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 28 31.2 33.4 34.5 32 31.2 31.2 31.2 31.2 31.2 31.2 31.2 3	0-6 A1 21.6 63.9 14.5 6.9 .8 4.5 7.6 5.6 3.1 31.3 32.6 18.5 36.1 88 2.66-13 12 38.1 55.7 6.2 1.5 1.6 7.7 14.5 9.6 4.7 27.1 28.6 33.4 34.5 28 34.5 28 32-14 82.1812 38.1 53.4 6.5 1.3 1.1 7.3 14.2 10.2 5.3 26.8 26.6 32.8 35.0 15 8.3 24 82.1812 38.1 53.4 6.5 1.3 1.1 7.3 14.2 10.2 5.3 26.8 26.6 32.8 35.0 15 8.3 24 8.3 1.5 34.4 6.5 5.4 1.0 2.2 9.4 18.4 12.6 5.5 25.2 21.3 42.6 34.3 19 6.50 21.2 49.0 46.6 4.4 .5 2.0 9.4 18.6 13.1 5.9 25.2 21.4 43.1 34.3 34.8 11 10.2 22.2 9.4 18.4 12.6 5.5 25.2 21.3 42.6 34.3 19 6.50 21.2 49.0 46.6 7.4 1.3 1.4 8.9 21.2 16.7 6.7 22.1 15.5 48.2 33.7 17 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	DEPTH	E CR	ZON	2+ .05	.05- .002	CLAY LT .002	PINE CLAY LT .0002	vcos 2-	CORS	SAND - BAND - BEDS .5- .25	FMES .25~	TSIS, 3 VPWS .10-	COSI .05	311, SILT- FNSI .02 .002	VFSI .005	SAND - 2- .10	INTR II .2- .02	PINE CLAY TO CLAY	CT YA CO3- NOM-	RATI 6D1 15- BAI TO CLAI
105-13 12 38.1 55.7 6.2 1.5 1.6 7.7 14.5 9.6 4.7 27.1 28.6 33.4 38.5 28 32.8 35.0 15 32.8 28.1 33.4 8.5 1.3 1.1 7.3 14.2 10.2 5.3 26.8 26.6 33.4 38.5 28 32.8 35.0 15 32.8 35.	16-13																				
	3-24 B21BIR 38.1 53.4 6.5 1.3 1.1 7.3 14.2 10.2 5.3 26.8 26.6 32.8 35.0 15 48-36 B2IR 48.1 46.5 5.4 1.0 2.2 9.4 18.4 12.6 5.5 25.2 21.3 4.26 34.3 19 16-50 24.2 49.0 46.6 4.4 .5 2.0 9.4 16.6 13.1 5.9 25.2 21.3 42.6 34.3 19 16-50 24.2 49.0 46.6 4.4 .5 2.0 9.4 16.6 13.1 5.9 25.2 21.4 43.1 34.8 11 17.2 246B: 54.9 37.6 7.5 1.3 1.4 8.9 21.2 16.7 6.7 22.1 15.5 48.2 33.7 17 17.2 291 282T 66.0 26.8 7.2 1.9 1.9 11.7 26.3 19.8 6.3 15.8 11.0 59.7 27.6 26 11-175 201 95.1 3.5 1.4 .5 8.1 24.2 35.3 25.1 2.4 2.7 .8 92.7 12.1 5.2 20.2 98.8 9 3 1.8 19.5 52.3 24.5 7 .8 .1 98.1 6.0 PPER (PARTICLE SIZE ABALYSIS, HH, 3B, 3B1, 3B2) (BULK DENSITY) (HATRE CONTENT) CARBOWATE (PH - VOL. (+WIEGHT) 4 A1D 4418 4D1 4B1C 4B1C 4B2 4C1 6E18 3418 8C14 8C 4B2 4C1 6E18 3418 8C 4B																				2.9
28-36 B2ZTR 48.1 46.5 5.4 1.0 2.2 9.4 18.4 12.6 5.5 25.2 21.3 42.6 34.3 19 46-50 212 49.0 46.6 4.4 .5 2.0 9.4 18.6 13.1 5.9 25.2 21.4 43.1 34.8 11 50-72 2468' 54.9 37.6 7.5 1.3 1.4 8.9 21.2 16.7 6.7 22.1 15.5 48.2 33.7 17 7.291 2B27 66.0 26.8 7.2 1.9 1.9 11.7 26.3 19.8 6.3 15.8 11.0 59.7 27.6 26 71-175 2C1 95.1 3.5 1.4 5 8.1 24.2 35.3 25.1 2.4 2.7 18 92.7 71.1 18 75-220 2C2 98.8 .9 .3 1.8 19.5 52.3 24.5 .7 .8 .1 98.1 6.0 EPTE (PARTICLE SIZE AMALYSIS, HH, 38, 381, 382) (BULK DEMSITY) (HATER CONTENT) CARBOWATE (PH - VOL. (ERIGHT) AA1D 4A1E 4D1 4B1C 4B1C 4B1C 4B1C 4B1C 6E1B 3A1A 8C1A 8C1 4B1C 4B1C 4B1C 4B1C 4B1C 4B1C 4B1C 4B																					
18-50 21-12	16-50 21-2																				
10-72 2168 5 54.9 37.6 7.5 1.3 1.4 8.9 21.2 16.7 6.7 22.1 15.5 48.2 33.7 17 2-99 2022 66.0 26.8 7.2 1.9 1.9 11.7 26.3 19.8 6.3 15.8 11.0 59.7 27.6 26 20-175 2C1 95.1 3.5 1.4 .5 8.1 24.2 35.3 28.5 .7 .8 .1 98.1 6.0 EFTE (PARTICLE SIZE ABALISIS, HH, 3B, 3B1, 3B2) (BULK DEWSITY) (WATER CONTENT) CABBOWATE (PH - VOL. (* REIGHT * * * * * * * * * * * * * * *	10-72 2268 56.9 37.6 7.5 1.3 1.4 8.9 21.2 16.7 6.7 22.1 15.5 48.2 33.7 17 2-91 2822 66.0 26.8 7.2 1.9 1.9 11.7 26.3 19.8 6.3 15.8 11.0 59.7 27.6 26 11-175 2C1 95.1 3.5 1.4 5.8 8.1 24.2 35.3 25.1 2.4 2.7 .8 92.7 12.1 5-220 2C2 96.8 .9 .3 1.8 19.5 52.3 24.5 .7 .8 .1 98.1 6.0 PTE (PARTICLE SIZE AWALTSIS, HH, 3B, 3B1, 3B2) (BULK DEWSITY) (WATER CONTENT) CARBOWATE (PH - WOL. (WEIGHT) AAID 4AIE 4D1 4B1C 4B1C 4B2 4C1 6E1B 3AIA 8C1A 8C1A 8C1A 8C1A 8C1A 8C1A 8C1A 8C1																				
	2-91 2822 66.0 26.8 7.2 1.9 1.9 11.7 26.3 19.8 6.3 15.8 11.0 59.7 27.6 26 11.17 26.3 25.3 25.1 2.4 2.7 18.9 92.7 12.1 15.2 262 98.8 .9 .3 1.8 19.5 52.3 28.5 .7 .8 .1 98.1 6.0 19.1 12.1																				
27-175 2C1 95.1 3.5 1.4 .5 8.1 24.2 35.3 25.1 2.4 2.7 .8 92.7 12.1 95.20 2C2 96.8 .9 .3 1.8 19.5 52.3 24.5 .7 .8 .1 98.1 6.0 EFTE (PARTICLE SIZE AWALTSIS, HM, 3B, 3B1, 3B2) (BULK DEWSITY) (WATER COWTENT) CARROWATE (PR - VOL. (WEIGHT 4A1D 4A1H 4D1 4B1C 4B2 4C1 6E1B 3A1A 8C1A 8C GT GT 75-20 20-5 5-2 LF 20-2 1/3- OVEN COLE 1/10 1/3- 15- WED LT LT 1/1 1/2 2 75	10-175 2C1 95.1 3.5 1.4 .5 8.1 24.2 35.3 25.1 2.4 2.7 .8 92.7 12.1 5-220 2C2 98.8 .9 .3 1.8 19.5 52.3 24.5 .7 .8 .1 98.1 6.0 PTE (PARTICLE SIZE AWALTSIS, HH, 3B, 3B1, 3B2) (BULK DEWSITT) (WATER COWTENT) CARBOWATE (PR - VOL. (WEIGHT) 4A1D 4A1H 4D1 4B1C 4B2 4C1 6E1B 3A1A 8C1A 8C																				
	S-220 2C2 96.8 .9 .3 1.8 19.5 52.3 24.5 .7 .8 .1 98.1 6.0																				•
PTH (PARTICLE SIZE ABALTSIS, HH, 3B, 3B1, 3B2) (BULK DEWSITY) (WATER CONTENT) CARBOWATE (PH VOL. (WEIGHT) 4A1D 4A1H 4D1 4B1C 4B1C 4B2 4C1 6E1B 3A1A 8C1A 8C GT GT GT 75-20-20-5 5-2 LF 20-2 1/3- OVER COLE 1/10 1/3-15- ERD LT LT 1/1 1/2 75	PTE (PARTICLE SIZE ABALTSIS, HH, 3B, 3B1, 3B2) (BULK DEWSITY) (WATER CONTENT) CABBOWATE (PH-VOL. (WEIGHT) 4A1D 4A1H 4D1 4B1C 4B1C 4B2 4C1 6E1B 3A1A 8C1A 8C 4B2 75	75-220	2C2		96.8		. 3			19.5	52.3										
GT GT 75-20 20-5 5-2 LT 20-2 1/3 OVEN COLE 1/10 1/3- 15- NRD LT LT 1/7 1/2 2 75 CR PCT PCT (PCT LT 75) LT20 G/CC PCT PCT PCT PCT CH PCT PCT PCT CH PCT PCT PCT CH PCT	GT GT 75-20 20-5 5-2 LT 20-2 T/3- OVEN COLE 1/10 1/3- 15- NRD LT LT 1/1 1/2 2 75	EPT H																			
2 75 CH PCT PCT (PCT LT 75) LT20 G/CC G/CC PCT PCT PCT CH PCT PCT 10-6 TE 0 TE TE TE 81 TE .9 A 138.1	2 75 PCT PCT (PCT LT 75) LT20 G/CC G/CC PCT PCT PCT CH PCT PCT 10-6 TR 0 TR TR TR 81 TR .9 A 38.1 3-24 5 0 TR 5 1 62 6 1.0 A 3-24 5 0 TR 5 3 52 8 1.2 A 4-36 5 0 TR 5 3 52 8 1.2 A 4-36 5 0 TR 5 3 52 8 1.2 A 4-36 5 0 TR 5 3 52 8 1.2 A 4-37 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 11-175 55 5 5 25 10 2 A6 1.9 A 11-175 55 5 5 25 10 A 11-175 55 55 55 A 11-175 55 55 A 11-175 55 A			(·	6 B 1 B		8C1A	8C
CH PCT PCT (PCT LT 75) LT20 G/CC G/CC PCT PCT PCT CH PCT PCT CH PCT PCT PCT CH PCT	## PCT PCT (PCT LT 75) LT20 G/CC G/CC PCT PCT PCT CR PCT PCT ## PCT PCT (PCT LT 75) LT20 G/CC G/CC PCT PCT PCT CR PCT PCT ## PCT PCT CR PCT PCT CR PCT PCT ## PCT PCT CR PCT PCT CR PCT PCT PCT CR PCT PCT ## PCT PCT PCT CR PCT PCT CR PCT PCT PCT CR PCT				75-20	20-5	5-2					COLE									1/3
00-6 TR 0 TR TR TR 81 TR .9 A 36.1 4.8 4 06-13 5 0 TR 5 1 62 6 1.0 A 3.8 4.6 4 33-24 5 0 TR 3 2 63 5 1.1 A 6.7 4.7 8 24-36 5 0 TR 5 3 52 8 1.2 A 4.1 4.8 6 6-50 5 0 TR 4 3 51 7 1.84 1.88 .009 23.8 20.8 3.3 .24 1.18 4.8 4 60-72 5 0 TR 4 4 4 66 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 8 10-72 5 0 TR 4 4 4 66 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 8 11-175 55 5 25 25 10 2 86 1.9 A 1.	0-6 TR 0 TR TR TR 81 TR .9 A 38.1 4.8 4.6 4.6 4.3 5.0 TR 5 1 62 6 1.0 A 3.8 4.6 4.6 4.6 4.3 5.0 TR 3 2 63 5 1.1 A 6.7 4.7 4.8 4.6 6.5 0 TR 5 3 52 8 1.2 A 4.1 4.8 4.1 4.8 6.5 0 TR 5 3 52 8 1.2 A 4.1 4.8 6.5 0 TR 4 3 51 7 1.84 1.88 .009 23.8 20.8 3.3 .24 1.18 4.8 4.8 4.8 4.0-72 5 0 TR 4 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 4.9 4.9 4.9 5 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				_															H20	Cy
00-6 TR 0 TR TR TR 81 TR .9 A 38.1 4.8 4 16-13 5 0 TR 5 1 62 6 1.0 A 3.8 4.6 4 13-24 5 0 TR 5 3 2 63 5 1.1 A 6.7 4.7 14-36 5 0 TR 5 3 52 8 1.2 A 4.1 4.8 16-50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.18 4.8 4 16-50 5 0 TR 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 4 12-91 5 0 5 3 2 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.18 4.9 4 13-175 55 5 25 25 10 2 A6 1.9 A 1.9 A 1.9 A 1.8 A 1.8 A 1.8 A 1.9 A	0-6 TR 0 TR TR TR 81 TR .9 A 38.1 4.8 46-13 5 0 TR 5 1 62 6 1.0 A 3.8 4.6 4.6 4.6 4.6 4.6 4.6 5 0 TR 3 2 63 5 1.1 A 6.7 4.7 4.7 4.8 6.6 5 0 TR 5 3 52 8 1.2 A 4.1 4.8 .009 23.8 20.8 3.3 .24 1.18 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.6 6.7 4.7 4.8 6.8 6.7 4.7 4.8 6.8 6.7 4.7 4.8 6.8 6.7 4.7 4.8 6.8 6.7 4.7 4.8 6.8 6.7 4.7 4.8 6.8 6.7 4.7 4.8 6.8 6.7 4.8 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7		PCT	PCT	(PCT I	T /5 -	}	LT20	G/CC											
06-13 5 0 TR 5 1 62 6 1.0 A 3.8 4.6 4 3-24 5 0 TR 3 2 63 5 1.1 A 6.7 4.7 A 4.8 4.6 5 0 TR 5 3 52 8 1.2 A 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	6-13 5 0 TR 5 1 62 6 1.0 A 3.8 4.6 4 3-24 5 0 TR 3 2 63 5 1.1 A 6.7 4.7 A 4.8 A 6.50 5 0 TR 5 3 52 8 1.2 A 4.8 A 6.50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.18 4.8 A 6.7 2 5 0 TR 4 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 A 6.72 5 0 TR 4 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 A 6.72 5 0 TR 4 5 4 6 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 A 6.72 5 5 5 25 25 10 2 A6 1.9 A 1.9 A 1.9 A 1.6 5.2 A 1.6 5 5 5 5 5 5 5 25 25 10 2 A6 1.9 A 1.9 A 1.9 A 1.8 A 1.1 A 1.18		TD.		72	72	T P	81		.0 1											4,
13-24 5 0 TR 3 2 63 5 1.1 A 6.7 14-36 5 0 TR 5 3 52 8 1.2 A 4.1 4.8 6-50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.1B 4.8 60-72 5 0 TR 4 4 4 66 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.1B 4.9 4 72-91 5 0 5 3 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.1B 4.9 4 72-91 5 5 5 25 25 10 2 86 1.9 A 1.9 A 1.9 A 1.8 A 1.9 A 1.8 A 1.9 A	3-24 5 0 TR 3 2 63 5 1.1 A 6.7 4.4 4.6 6.7 4.1 A 6.7 4.6 6.5 4-36 5 0 TR 5 3 52 8 1.2 A 4.1 4.8 4.6 6.50 5 0 TR 5 3 52 7 1.84 1.88 .009 23.8 20.8 3.3 .24 1.18 4.8 4.8 4.8 4.6 6.70 5 0 TR 4 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 8 2.91 5 0 5 3 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.18 4.9 8 2.91 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			_																	4
24-36 5 0 TR 5 3 52 8 1.2 1 4 8.8 4 66-50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.18 4.8 4 66-50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.18 4.8 4 66-50 5 0 TR 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.1B 4.9 72-91 5 0 5 3 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.1B 4.9 4 71-175 55 5 25 25 10 2 86 1.9 1 1.6 5.2 8 75-220 5 0 TR 2 2 2 1 4 5 5.2 5 6818 6818 6818 C/F 662B 662B 662B 682B 682B 6818 6818 5838 5868 881 883 551 563 56 682B 682B 662B 662B 662B 662B 662B 6618 6618 5838 5868 881 883 551 563 56 682B 887B 887B 788 887B	4-36 5 0 TR 5 3 52 8 1.2 1 4 4.8 4.6 6-50 5 0 TR 4 3 51 7 1.44 1.48 009 23.8 20.8 3.3 24 1.18 4.8 4.0 6-50 5 0 TR 4 3 51 7 1.44 1.48 009 23.8 20.8 3.3 24 1.18 4.8 4.0 6-50 5 0 TR 4 4 46 8 1.78 1.81 005 13.9 11.8 4.1 13 4.18 4.9 4.2 -91 5 0 5 3 2 35 5 1.87 1.93 010 12.3 10.5 3.4 13 4.18 4.9 4.9 4.1 -175 55 5 25 25 10 2 46 1.9 1 1.6 5.2 4 1.6 5.2 4 1.6 5.2 4 1.9 1 1.6 5.2 4 1.9 1 1.6 5.2 4 1.9 1 1.6 5.2 4 1.6 5.2 4 1.9 1 1.8 1.0 1 1		5	_					_												4
16-50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.18 4.8 4.6 50-72 5 0 TR 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 1.13 4.18 4.9 4 1.79 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70	6-50 5 0 TR 4 3 51 7 1.44 1.48 .009 23.8 20.8 3.3 .24 1.18 4.8 4.0 -72 5 0 TR 4 4 4 66 8 1.78 1.81 .005 13.9 11.8 4.1 1.3 4.18 4.9 4.2 -91 5 0 5 3 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.18 4.9 4.10 -175 55 5 25 25 10 2 46 1.9 4 1.9	24-36	5																		4
50-72 5 0 TR 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 4 2-91 5 0 5 3 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.18 4.9 4 1-175 55 5 25 25 10 2 86 1.9 2 1.6 5.2 6 15-220 5 0 TR 2 2 1 4 .5 5.6 4 15-220 5 0 TR 2 2 1 4 .5 5.6 4 15-220 5 0 TR 2 2 1 4 .5 5.6 4 15-220 5 0 TR 2 1 IROW PHOS (EXTRACTABLE BASES 5842) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE SA 6A14 6B14 C/M 6C2B 662B 662B 662B 661A 661B 5A3A 5A6A 8D1 8D3 5F1 5C3 5C	0-72 5 0 TE 4 4 46 8 1.78 1.81 .005 13.9 11.8 4.1 .13 4.18 4.9 4 2-91 5 0 5 3 2 35 5 1.87 1.93 .010 12.3 10.5 3.4 .13 4.18 4.9 4 1.11 5.5 5 5 25 25 10 2 46 1.9 2 1.6 5.2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	36-50	5								1.48	-009	23.8	20.8		. 24	1.12	3			4
	2-91	50-72	5	ŏ																	4.
21-175 55 5 25 25 10 2 46 1.9 1 1.6 5.2 46 1.9 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1 1.6 5.2 46 1.9 1.9 1 1.0 1.0 1.9 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	13-175 55 5 25 25 10 2 46 1.9 1 1.6 5.2 46 1.9 1 5.5 5.6 6 5.2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	72-91	5	č		3	2	35													4.
SPTH (ORGANIC HATTER) INOW PHOS (EXTRACTABLE BASES 5842) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE SA 6414 681A C/W 6C2B 682E 602D 692B 602B 6814 661B 5A3A 5A6A 8D1 8D3 5F1 5C3 5C ORGH MITG MIT TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR PR PR TOTL CA HG WA K SUN BACL KCL BITB MHAC HEAC CA SAT EXTB WHO CAPE PR	5-220 5 0 TR 2 2 1 4 .5 .5 .6 6 FTE (ORGANIC HATTER) IRON PROS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE S) 64 14 68 14 C/W 6C2B 6R2E 602D 6P2B 602B 6814 6018 5434 5464 8D1 8D3 5F1 5C3 5C 0RGH HITG MIT TOTL CA HG MA K SUH BACL KCL BITB MHAC MHAC CA SAT EXTB WE CARR PROTECTION OF THE PROPERTY OF THE PROPE	91-179	5 55	Š	25	25	10	2	86	1.9 1										5.2	ă.
SPTH (ORGANIC HATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) BATIO CA (BASE SA 6A1A 6B1A C/F 6C2B 6E2E 602D 6P2B 6Q2B 6H1A 641B 5A3A 5A6A 8D1 8D3 5F1 5C3 5C 0RGH HITG HIT TOTL CA HG HA K SUH BACL KCL BITB HHAC HEAC CA SAT BYTB HHAC CAPP PR BYTH TRA RIT ACTY TO TO WHAC ACTY	PTH (ORGANIC HATTER) IRON PHOS (EXTRACTABLE BASES 584A) ACTY AL (CAT EXCH) RATIO CA (BASE SI 6A1A 6B1A C/F 6C2B 6E2E 602D 6P2B 6Q2B 6H1A 6G1B 5A3A 5A6A 8D1 8D3 5F1 5C3 5C ORGH HITG MIT TOTL CA HG MA K SUH BACL KCL BITB MHAC HEAC CA SAT EXTE WE CARR PR TO TO MHAC ACTY					_		_	_						_						_
SPIE (ORGANIC HATTER) IROW PROS (EXTRACTABLE BASES 5844-*) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE S) 6414 6814 C/W 6C2B 6H2E 6Q2D 6P2B 6Q2B 6H14 6418 5A3A 5A6A 8D1 8D3 5F1 5C3 5C ORGH BITG MIT TOTL CA HG MA K SUN BACL KCL BITB MHAC HEAC CA SAT BATB WH CAPE PR PR TOTL CA HG MA K SUN BACL KCL BITB MHAC HEAC CA SAT BATB WH CAPE PR PR TOTL CA HG MA K SUN BACL KCL BITB MHAC ACTY TO TO WHAC ACTY	PTH (OBGANIC HATTER) IMON PHOS (EXTRACTABLE BASES 5844) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE SI 6A1A 6B1A C/W 6C2B 6R2E 6Q2D 6P2B 6Q2B 6R1A 6418 5A3A 5A6A 8D1 8D3 5F1 5C3 5C OBGH BITG MIT TOTL CA MG MA K SUM BACL KCL BITB MHAC MHAC CA SAT EXTB WE CARB PR TO MHAC ACTY	75-220	J 5	0	TR	2	2	1	4											3.0	4.
ORGH HITG HIT TOTL CA MG HA K SUN BACL KCL BITB HEAC CA SAT SITB HE CARR PR TO TO HEAC ACTY	ORGH MITG MIT TOTL CA MG MA K SUN BACL KCL BITB MHAC HAC CA SAT BITB WE CARR FR TO TO MHAC ACTI	BPT E					PBOS				ASES SE		ACTY	ML	(CAT	EXC H)	RATIO	BATIO			
CERR PR RYPR TRA RYT ACTY TO TO MRAC ACTY	CARR PR RYPR TRA RYT ACTY TO BRAC ACTY																				
					•		TUTL	-	MA.		N.					M D AC					wil .
			C a MH									BATH	TRE	A A 1	A1.FV		- 14		ANAL		
1 y 2 y 2 y 2 y 2 y 2 y 2 y 2 y 2 y 2						·	·				·	·	·		·		·				
The state of the s	The part of the pa																				
		٠,-	, , ,			"			:												==:

000-6 006-13 013-24 024-36 036-50 050-72 072-91 091-175				.6 .7 1.5 .9 .7		26.4 1.4 .7 .4 1.5	3.4 .4 .3 .1	.1 .1 .1 .1	. 1	30.8 3.0 1.9 .9 .5 2.1 2.7	38.0 7.3 18.8 12.0 9.0 6.6	.0 .8 3.0 2.3 1.8 2.4 1.3	10.3 20.7 12.9 9.5 8.7	58.2 8.7 13.5 8.7 6.3 7.0 6.1	4.01 1.40 1.59 1.61 1.43 .93	6.0 4.7 7.0 4.0 3.0	45 28 10 8 6 21 30	45 29 7 5 24 36	53 34 14 10 8 30 44
DEPTH CB	(SATOR SE1 REST OHE- CE	ATED 8C1B PB	PASTE) 6A H2O PCT	BA 5D2 ESP PCT	ya 5r sab	SALT 8D5 TOTL SOLU PPB	GTP 671A PCT	6212 82 80 8805/	6#1B CA	601B BG	SATUR 6P1B BA	601B	EXTRACT 611A CO3 / LITE	HCO3	6K1A CL	6111 504) 6M1A WO3	LQID 1	ERG FP2 PLST
000-6 006-13 013-24 024-36 036-50 050-72	34000) 4.1	9 28.1					.21								****			
050-72 072-91																			

IDENTIFICATION OF THE SPODIC HORIZON BY LABORATORY CRITERIA.

Soil classification: Typic Glossoboralf; coarse-loamy. mixed.

Soil: Padus taxadjunct* .

Soil No.: 872WI-21-8 (LSL Nos. 72L869-72L877).

Location: Forest County, Wisconsin; SWk, NWk, Sec. 23, T. 38 N., R. 12 E.

Climate: Humid continental; mean annual temperature ranges from 40° to 45° F; mean annual precipitation ranges from 28 to 34 inches; frost-free season is 130 to 135 days.

Vegetation and land use: Native vegetation was mixed northern hardwoods and conifers. Cutover areas are presently in aspen. About 30 percent of this soil is cleared and used for general farming. Some wooded areas are pastured.

Parent material: Thin silt (probably loss) over sand and gravel outwash.

Physiography: Nearly level to steep glacial outwash plains, stream terraces, and pitted outwash.

Topography: Site is on a 2 percent plane slope in a wooded area.

Drainage: Hoderate and well drained.

Ground water: Deep.

Brosion: Slight

Permeability: Moderate in sola, rapid in substratum.

Described by: Steve Payne and Robert Fox.

Sampled by: Robert H. Jordan and Robert L. Juve, September 21, 1972

(Colors are for moist soils unless otherwise stated)

Ol 2 to 0 cm (1 to 0 inches). Partially decomposed leaves from the forest cover and about 1 cm of fully decomposed organic matter.

Al 72L869 0 to 6 cm (0 to 2 inches). Dark reddish brown (5YR 2/2) silt loam with a high sand content; weak fine granular structure; friable; about 5 percent fine gravel; many fine roots; high organic matter content; strongly acid; abrunt boundary.

A2 72L870 6 to 13 cm (2 to 5 inches). Brown (7.5YR 5/2) silt loam; weak fine subangular blocky structure parting to weak fine platy structure; friable; about 5 percent of fine gravel; roots common; very strongly scid; abrupt boundary.

B2lhir 72L871 13 to 24 cm (5 to 9 inches). Brown (7.5YR 4/4) silt loam with high sand content; weak fine subangular blocky structure; very frieble; fine roots common; very strongly acid; clear boundary.

B221r 72L872 24 to 36 cm (9 to 14 inches). Brown (7.5YR 5/4) sandy loam with high silt content; weak fine sub-angular blocky structure; very friable; roots common; very strongly acid; abrupt boundary.

IIA'2 721.873 36 to 50 cm (14 to 20 inches). Brown (7.5YR 4/2) sandy loam; moderate medium subangular blocky structure; slightly brittle, friable; vesicular; very strongly acid; clear boundary.

IIAAB' 72L874 50 to 72 cm (20 to 29 inches). Brown (7.5YR 4/2) sandy loam, the crushed color is brown (7.5YR 4/4); weak medium subangular blocky structure; peds part to weak platy structure; some peds are brittle and weakly cementad; silt coatings on the peds and streaks of lighter color; clay films are common on the peds of the B horizon; strongly acid; abrupt boundary.

IIB2t 721.875 72 to 91 cm (29 to 36 inches). Reddish brown (5YR 4/3) heavy sandy loam; moderate medium subangular blocky structure; friable; clay films are common; about 5 percent medium and coarse gravel and about 5 percent fine gravel; a few coatings of silt and fine sand on the peds; many clay bridges; very strongly acid; abrupt wavy boundary.

IIC1 72L876 91 to 175 cm (36 to 70 inches). Strong brown (7.5YR 5/6) sand and gravel; single grained; loose; about 45 percent of medium and coarse gravel and 15 percent of fine gravel in the main body of the C1 horizon; just below the B2t horizon there is a layer about 15 cm thick of sand with about 10 percent gravel; there are also thin layers of brittle losm about 2 cm thick; about 5 percent of the horizon is cobblestones; medium acid; abrupt wavy boundary.

IIC2 72L877 175 to 220 cm (70 to 88 inchas). Brown (7.5YR 5/4) medium and coarse sand; single grained; loose; about 80 percent of the sand is medium; about 5 percent of the horizon is fine gravel.

Remarks: A sample of this soil, IIB2t horizon, was sent to the University of Wisconsin for examination of the thin section.

*This pedon lacks a spedic horizon; therefore, it is a taxadjunct to the Padus series.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, HISC NATIONAL SOIL SERVEY LABORATORY LINCOLD, MEDRASKA

SOIL NC - - - - - S74WI-55-3

COUNTY - - - JEFFERSON

GENERAL BETHODS- - - 1A, 1818, 2A1, 28

SAMPLE NOS. 7411489-7411493

CH			(- PC	r LT 2	SE) PCT	PCT	CL
000-23	OA P									+			******						
023-58	012																		
058-79 079-89	013				20.2		TR	TR		~ "	~ ~				~ ~				
089-152	2C16 2C2			66.1 71.1			.1		.5 .2	2.4 .9		23.6	41.8 47.5		2.9 1.3				•
DEPTH	VOL.	(CPE 2T	ZE AN	85:	, no, IGBT -			4A1D	4111	4 D 1	481C	481C	SK CU:	4C1		6E1B	3111	8C1A	n = 80
	GT	GT		0 20-5		LT	20-2	1/3- BAR	OVEN	COLE	1/10		15-	WRD		LT	LT	1/1	1/
Cit	2 PCT	75 PCT	(- PCT I	LT 75		PCT 1.120	BAR G/CC	DRY G/CC		BAR PCT	BAR	BAR PCT	CH/		2	.002	H20	CI
000-23																		6.1	
023-58	ŏ	ŏ	0	ō	õ		ŏ	.20	1,01		446	338	117	, 54				6.1	
058-79	0	Ō	0	0	o		0	.40	.93		206	174	69	. 42				6.4	
079-89 089-152	0	0	o	0	0		0	1.35 .68	1.35	.08 .26	37 1 10	95 98	20 28	- 20 - 48				6.0 6.7	
++																		*****	
DEPTH (DRGANI 6111			IRON 6C2B		(E							(CAT 5a3a			RATIO 8D3		(BAS) 5c3	
	ORGE			EXT		CA		HA	ĸ	SUA	BACL	KCL	BITB	NHAC	MHAC	CA	SAT	EXTB	
CH	CARB PCT	PCT		FE PCT	PCT	(EXTE			acti		TG) CLAY		PCT	PCT	
																		,	
000-23 023-58	32.9 31.5	2.85 3.38				116 137	29.3 45.5	.2		146 183	43.4 63.7		189 247	145		4.0 3.0		77 74	1
058-79	30.3	2.08				101	37.4	. 2	.2	139	36.3		175	138		2.7			
079-89	3.27	.210					13.0	. 2	. 2	38, 9	6.1		45.0	36.8		2.0			
089-152	6.84	. 468	15			27.4	14.3	. 2	.2	42.1	8.1		50.2	38.8		1.9	71	84	1
DEPTH	(SATUR			BA	M V		GYP	(SATORI	TTOE	BITRAC	 - 8a 1-)	ATTER	
	821 (8 <u>).</u> 820	5D2 ESP	SE SER	8D5 TOTL	6F1A	BA1A				601B K	GI1A CO3		6K1A CL		681A 803	4F1 LOID	
	rest ore-	ru .	840	POF	SAR	SOLU	1	BEBOS/	CE	44	**		COG	#¢03	CE	304	mU3	Lair	
CH	CN		PCT	PCT		PPH	PCT	CH (
000-23	870	5.8	301			4600		2.33		9.1	.2	• 1	0	3	.0		19.8		
023-58 058-79		5. 6 6. 0	785 332			11000 2800		1,98 1,19	6.7	9.7 6.1	. 2	- 1 - 1	ŏ	1.2 .6	.2 .0	5.6	6.7		
079-89	2300					230		.40	2. 1	1.9	. 2	TR	ŏ	.6		3.4			
089-152	2200		161	1		530		.5 1	2.6	2.4	. 1	TR	0	. 6	. 2	3.9	1.0		
DEPTH						-RISTO)				
	-			DECORP				LK DEM						IT)				
	SF MTM1.	(TTRE	B AVI.) PTRO	enu <i>ed</i> = Pr	861. 10. T	K 483.	A 4A13	[4D		- PILI	1 4810 1/3							
	CONT	UNER	RUB	SOLU	BILITY	CAC	L STA	REWI							_				
Cā	PCT	PCT	PCT		s colo		G/C		:	PC:	r PC		r PC		•				
				10 Y	R 2/	2 5.				7:			8						
000-23	31	18						•							-				
000-23 023-58	15	32	4	7.5T	R 4/	4 5.	9.24		20	6 9	272	2 160	6 11:	3 .2					
000-23			4		R 4/	4 5.	9.24	. 40	5 .41	6 9	272	2 160	6 11: 0 6:	3 .2 1 .2	7				

Soil classification: Terric Medisapriata; loamy, mixed, suic, mesic.

Series: Palms.

Pedon: S74WI-55-3.

Location: Jefferson County, Wisconsin; SE's, NW's, Sec. 33, T. 8 N., R. 15 E.; 462 feet north from center of road (annrox. opposite barn at farmatead) and 129 feet east from north-south drainage ditch.

نعتار

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - STOWIS-37-5 COUNTY - - - MARATHON

GENERAL METHODS- - - 14,1818,241,28

SAMPLE NOS. 701902-701911

GENERAL	METHO	D\$	-1A,1	B1B,2A	1,28			SAMP	LE NOS.	. 70L9	02-70L	911							
DEPTH	HORI	Z'ON	(·						LE SIZE SAND -										
			SAND	SILT	CLAY	CLAY			MEDS				FNSI	VFSI		11		CO3-	15-
			2-	+05~	LT	LT	2-	1-	- 5-	.25-	-10-	.05	•02	+005	- ŞAND	.2-	TO		BAR
CM				.002		.0002			.25 PC1		.05 MM				21			PCT	TO
000-13	API		26.0	64.9	9.1		1.8			3.6			32.4			37.0			
013-22	AP2		23.9				1.6			3.6			32.2			38.4			.5
022-33	A2		32.1	56.2			2.0			5.5						39.5			. 5
033-45	2B&A		27.2				2.8			5.1	6.4				20.8	34.8 34.4	59		**
045-67 067-96	2821 2822		24.1 34.9				3.7 4.5			4.9 9.8					27-5	31.7	60 60		-4
096-128			42.0				5.3			11.8					34.2	31.7	57		.4
128-162			51.2				8.4			13.2	7.7				43.5	31.4	52		.4
162-192			61.4				17.7			11.6	6.4				55.0				- 5
192-222	3C3		55.9	14.1	30.0		15.3	14.4	7.1	11.5	7.6	6.6	7.5		48.3	20.4			. 44
DEPTH !	PARTI	CLF S	IZF AN	LYSIS		3B . 3B1	382) (BU	LK DENS	 S [T Y) (WAT	ER COI	NTENT-	l	CARBO	NATE	(PI	
		(WE	IGHT -			1 4A1D	441H			481C		4C1	•		3A1A		
	GT		75-20	20-5	5-2	LT	20-2	1/3-	OVEN		1/10			WKU			LT		1/2
CM	2 PCT	75		ne t	. 7 75	1	PCT	BAR	DRY G/CC		BAR	8AR PCT	BAR PCT	CM/		2	.002 PCT	H20	CACI
000-13	10	0	TR	10	5	65			1.41	.013	27.3	25.1		.23	2.68	•		6.0	5.6
013-22 022-33	10 20	0	TR Tr	8 14	8 15	66 51		1.40A	1.72	.006	- 20 . 4	17.3	5.6	-15	4.98			6.2	
033-45		. 0	20	5	ŤŔ	20	15	1.50A		••••	2017		10.9		4.70			5.8	5.
045-67	55	Ď	35	23		27		1.47			30.1	28.1	13.3	-10	3.68			5.4	4.
067-96	40	0	22	23		31	43	1.55		-040	25.7	23.6	11.4	-11	1.98			5.7	
096-128		0	38	8	4	32		1.65		.020		20.4		.11	2.58			5.7	5.4
128-162		0	39 42	9 10	7	24 16	26 34	1.73	1 * 82	.012	19.9	18.1	7.7 10.3	.10	1.98			5.7	5.3 5.1
162-192 192-222		Ö	49	18	4	12	51	1.11	1.47	.040	34.9	34.1	13.2	.10				5.3	4.9
DEPTH (ORGANI (MAT'	TER)												RATIO		ÇA		E SATI
			C/N		TOTL			6PZB NA	6Q2B K	SUM	5HLA BACL				8D1 NHAC	BD3 CA	SAT	5C3 EXT8	5C1 NHAC
	DRGN CARB	MIIG		EXT FE	1016	CA	MG	MH			TEA	EXT	ACTY	MARC	TO	TO	NHAC	ACTY	HURY
CM	PC T	PCT		PCT		(2 / 10	0 G-						PCT	PCT	PCT
000-13						7.8	1.3			9.4			17.4	10.5	1.15	6.0	74	54	9(
013-22		.07		1.1		7.3	1.2			8.8			13.1	9.7	0.96	6.1	75	67	91
022-33	0.20	.02		1.4		6.2	2.0		0.2	. 8.6	4.0		12.6		0.80	3.1	66	68	91
033-45		.02	3			10.6	6.1			17.2			23.6		0.73	1.7	58 53	73 76	9:
045-67		.01	7	2.1 2.0		10.7	8.0			19.3 19.2			25.4 25.1		0.66 0.77	1.3 1.5	57	76	97
067-96 096-128				2.0 1.9		9.1	7.4 6.7						20.5		0.84	1.4	52	79	9:
128-162				1.7		8.9	5.6						19.2		0.96	1.6	57	78	9
162-192				3.4		8.7	5.5			14.8	6.4		21.2		0.85	1.6	52	70	81
192-222	D. 15			3.0		9.9	6.8	0.3	0.4	17.4	8.1		25.5	18.3	0.61	1.5	54	68	99
DEPTH	SATUR	ATED	PASTE)	NA NA	NA.	SALT	GYP	 -			SATUR	ATION	EXTRAC	T 8A1-		====	====	ATTER	BERG
,	8E1		8A	502	5€	805		BALA	6N1B	601B	6P1B	6918	61 1A	6JlA	6KIA	6L14	6M1A	4F1	4FZ
	REST	PH	H 50	E SP	SAR	TOTL			CA	MG	NA	K	CO3	HC03	CL	\$04	ND3	FOID	
CM	OHM-		PCT	PCT		SOLU PPM	PCT	MMHOS/ CM	(- MEO .	/ LÍTEI	R			1	PCT	INDX
																		32D	5
013-22																			_
022-33																			
033-45																			
045-67																		31D	14
067-96 096-128	2 200	5.3	28.6	1	1	110		0.67	2.4	2.2	1.2	TR						310	
128-162	2200	243	40.0	•	•			3.07				• • • •							
162-192																			
192-222																		43D	20

⁽A) ESTIMATED.

(B) MICRO-PENETRATION RESISTANCE - A ROD 3.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10- BAR.

A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTM.

STRENGTH.

(C) ORGANIC CARBON IS 5 KG/M SQ TO A DEPTH OF 1 M (6A).

(D) DETERMINED BY SDIL MECHANICS LAB - SCS, LINCOLN. NE.

Soil classification: Aquic Entroboralf; fine-loamy, mixed .

Soil: Rietbrock taxadjunct* .

Soil No.: S70WI-37-5.

Location: Marathon County, Wisconsin; NE%, SE%, NE%, Sec. 34, T. 30 N., R. 6 E.; in exact center of NE quarter. Climate: Humid continental; mean annual temperature is about 43° F; mean annual precipitation is about 30 inches;

and frost-free season is about 133 days.

Vegetation and land use: Native vegetation was mixed deciduous and coniferous forests. Many areas have been main-

William or west for restrict forth suns hour hour stand for concret ferming

Il Parent mate

Parent material: Thin silty sediments over residuum from greenstone and fine-grained granite rocks.

Physiography: Nearly level to gently sloping rock-controlled uplands.

Topography: Site is on a 3 percent plane slope in a grass pasture.

Drainage: Somewhat poorly drained

Ground water: Deep; a perched water table exists for short periods within 2 feet of the surface during wet seasons.

Erosion: Slight to none.
Permeability: Moderate
Described by: Paul H. Carroll

(Colors are for moist soils unless otherwise stated)

Apl 70L902 0 to 13 cm (0 to 5 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine subangular blocky structure; friable; many fine fibrous roots; trace of greenstone and fine-grained granite rock fragments 2 to 75 mm in diameter; medium acid; abrupt smooth boundary.

Ap2 701903 13 to 22 cm (5 to 9 inches). Dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; many fine prominent mottles of yellowish brown (10YR 5/6-5/8); weak fine subangular blocky strucutre; friable; many fine fibrous roots; trace of greenstone and fine-grained granite rock fragments 2 to 75 mm in diameter; medium acid; abrupt smooth boundary.

A2 70L904 22 to 33 cm (9 to 13 inches). Brown (10YR 5/3) silt loam with many fine prominent mottles of yellowish brown (10YR 5/6-5/8); weak thin platy structure; friable; common fine fibrous roots; trace of greenstone and fine-grained granite rock fragments 2 to 75 mm in dismeter; medium acid; clear wavy boundary.

IIB&A 701905 33 to 45 cm (13 to 18 inches). Dark yellowish brown (10YR 4/4) heavy loam (Bt) with many fine distinct and prominent mottles of yellowish brown (10YR 5/6-5/8), strong brown (7.5YR 5/6-5/8), and grayish brown (10YR 5/2); moderate medium subangular blocky structure; firm; occupies about 70 percent of the horizon and consists of upward extensions of the underlying B2t horizon; few fine fibrous roots; few thin clay films on faces of peds and in continuous pores; tongues of light brownish gray (10YR 6/2) very fine sandy loam (A2) surrounds the upward extensions of B2c; weak thin platy structure; friable; 15 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (20 percent 2 to 75 mm); medium acid; clear wavy boundary.

IIB21t 70L906 45 to 67 cm (18 to 26 inches). Dark brown (7.5YR 4/4) gravelly clay loam with many fine and medium distinct and prominent mottles of strong brown (7.5YR 5/8) and grayish brown (10YR 5/2); moderate fine and medium angular blocky structure; very firm; few fine fibrous roots; continuous clay films of dark brown (10YR 3/3) on faces of most peds and in tubular pores; thin patchy bleached silt coats along primary vertical cleavage planes; 20 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (25 percent 2 to 75 mm); medium acid; gradual wavy boundary.

IIB22t 70L907 67 to 96 cm (26 to 38 inches). Dark brown (7.5YR 4/4) gravelly clay loam with common fine distinct and prominent mottles of strong brown (7.5YR 5/6-5/8) and many fine black (10YR 2/1) manganese spots; moderate fine and medium angular blocky structure; very firm; many thin clay films on faces of peds and in tubular pores; 15 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (20 percent 2 to 75 mm); medium acid; gradual wavy boundary.

IIB3t 70L908 96 to 128 cm (38 to 50 inches). Dark brown (7.5YR 4/4) loam with common fine distinct and prominent mottles of strong brown (7.5YR 5/6-5/8) and common fine black (10YR 2/1) manganese spots; weak and moderate medium angular blocky structure; firm; many clay films on faces of peds and in tubular pores; 10 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (14 percent 2 to 75 mm); medium acid; gradual wavy boundary.

IICl 701909 128 to 162 cm (50 to 64 inches). Dark brown (7.5YR 4/4) sandy loam with common fine prominent black (10YR 2/1) manganese spots; weak fine angular blocky structure; firm; few thin clay films on faces of peds and continuous in tubular pores; 5 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (7 percent 2 to 75 mm); medium acid; gradual wavy boundary.

IIC2 701910 162 to 192 cm (64 to 78 inches). Strong brown (7.5YR 4/4) sandy loam; weak fine and medium angular blocky structure; firm; common thin clay films on faces of peds and in tubular pores; 5 to 10 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in diameter (7 to 12 percent 2 to 75 mm); medium acid; gradual wavy boundary.

IIIC3 701911 192 to 22 cm (78 to 87 inches). Dark brown (7.5YR 4/2) gravelly sandy clay losm; weak medium and coarse angular blocky structure; firm; many thin locally derived clay films on faces of peds and in pores; clay films result from in place weathering (hydration) of biotite mica (aluminum silicate) books, giving rise to many isolated books of thin clay films; 10 percent by volume of greenstone and fine-grained granite rock fragments 20 to 75 mm in

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MTSC NATIONAL SCIL SURVEY LABORATORY LINCOLN, NEBRASKA

\$01L NO - + - - - 575WI-95-6

CCUNTY - - - PELK

GENERAL METHCCS- - -14,1818,241,28

SAMPLE NOS. 760210-760217

DEPTH	HCR I ZO	Ħ				FINE	(SAND -		1	(-SILT-)	INTR	FINE	NCN-	801
					CLAY		VCC\$	CCRS	MEDS	FNES	VENS	COSI	FNSI	VFSI	SAND	11		C03~	15-
			-06	-05-	LŤ	LT .0002	2-		. 5- . 25	.10	-05	.03	-002	-002	- 25	.02	TO.	CLAY	TO
CM			(+						PC1	LŤ 21	4H							PÇT	
CC-018			53.7	41.9	4.4		5.9	18.5	16.6	7.8			17.6		48.8	31.2	27		. 9
18-036				39.9			7-1	18-1	17.6		4.9	22-2	17.7		51.6	29.4	28		5
36-048				42.6		3.8			15.1	7.4 9.5			16.6		41.8	35.4 31.0			
48-066 66-081				32.1	13.4	7.1	. 7.9			13.0		10.6	13.0 8.7			18.2			
81-094				17.1	6.4		10.3			14.4		9.2	7.9			16.0			
94-122				2.5	6		15.7		29.5	6.9	.9	1.0	1.5		96.0				
22-152			95.7	2.4	1.9		11.1			13.8		1.9	5		94.4	6.8	79		
EPTH (PART ICL	F SI	ZE ANA	LYSIS	. MM.	3B. 3B1) (BU	LK DENS	ITY) (-	-WAT	ER CO	NT ENT-) CARB	DNATE	(P)	
	VC! /-			UE	TCFT -			1 4410	AAIH	401	481C	481C	482	401		6E1B	BALA	8C1A	8C1
	GT G	Ť	75+20	20-5	5-2	ŁT	20-2	1/3-	OVEN	COLE	1/10	1/3-	15-	WRD		LŤ	LT	1/1	1/2
	2 7	5				LT -074	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	-002 PCT	H20	ÇAÇ
CM	PCT P				LT 75	1			+		PCT	PCT	PCT		*	PCT	PCT		
18-018	5 5 5 15 10	0	O TR	5 6	3 3	47 43	8 9	1.56	1.60	.008 .004		18.2	4.2 2.1	-21 -15				5.2 5.4	4. 5.
36-C48	5	C	TR	3	3	54	5	1.7 A					4.0					5.5	5.
48-C66	5	C	TR	3	4	49	7	1.76	1.80	-007		10.9	5.8	.09				5.2	
66-081	5	C	TR	. 4	4	27				.013		10.9 11.2	3.6	-13				5.3	
81-094	15	Ç	TR	14	7	20		1.608			10.5C		3.1	-12				5.4	4.
94-122	10	Ğ	TR	7	7	4		1.59B			2-10		1.0	.02 .02				5.5 5.7	4. 5.
22-152	5	C	TR	6	6	•	12	1.6 A					1.1	•02					
EPTH (CRGANIC				PHOS													(BAS) 5C3	SAY SCI
	6A1A 6		C/N		TOTI	6N2E Ca						KCF	5A3A		NHAC		SAT	EXTB	NHA
	ORGN N	116		EXT FE	1016	C.A.	nu	NA.			TEA	EXT	ACTY	MUMA		ŤĈ		AÇTY	(WITH
CM	PCT P	CT		PCT	PCT	(MEC	/ 100) G				CLAY	MG	PCT	PCT	PCT
	1.16					3.5	.6			4-2			10.1		1.66				5 7
18-036						2.4			TŖ	2.9	3.1	-1	6.0	4.1 7.4	1.14	4.8 3.4			7
36-048	-16	-cra	8			4.4 5.6	1.3 2.0			7.0	3.5 5.0		12.8	10.2	.76	2.8			
48-066 66-081	-18					3.7	1.3		1	5.1	3.1	. 3	8.2	6.4					8
81-C94	.10 .10					3.3	1.1				2.8	.2	7.3	5.4	.84				ė
194-122						1.4	.5					TR	3.2	2.3	3.83			59	8
22-152						1.4	.6	TR	TR	2.0	.9		2.9	2.1	1.11	2.3	67	69	9
FPTH (SATURAT	 ED P	ASTE)		 NA	SALT	CVD	 (SATURA	TION	EXTRAC	F 8A1-				ATTER	BERG
	8£1 8C	18	AB	5D2	5E	205	6F1A	BAIA	6N18	6018	6918	6Q1B	611:A	6 J L A	6K1A	6L1A	6M1A	4F1	4F2
	REST P		H20	ESP	SAR	TOTL		EC	6N18 CA	MG	NA	K	CO3	HC03	CL	504	NO3	LOID	PLST
CM	CM OH N-		PCT	PÇT		3000			(TMDX
CC-C18							·										****		
18-036 36-048																			
48-066																			
66-081																		170	30
81-C94																_			
94-122 122+152	51000	5.5	16.9					•06								•2			
36-48		KK	2 VR]																
66-81	1 MT4	KK	3 MII	VR1	921														
94-12	22 MV3 IVE AMOU	KK MTS-	Z MII	CZI	E = 05	MINAME	4 -	ARHADA	NT 2 -	MODE	RATE S	= 544	ALL 1	= TRA	CF.				
KELAT:	IVE ANDU	M 17 Z	(X-F	M T (00	marani	<u>.</u>		"?			- 311		- I - A	MADES				
			·																

Soil classification: Glossic Eutroboralf; coarse-loamy, mixed.

Soil: Rosholt taxadjunct*.

Soil No.: \$75WI-95-6.

Location: Polk County, Wiscongin; SE's, SW's, Sec. 29, T. 34 N., R. 15 W.; 250 feet north of Highway No. 8 by field entrance. About 45°25' N. latitude and 92°15' W. longitude.

Climate: Humid continental; mean annual temperature is 43° F; mean July temperature is 71° F; mean January temperature is 11.8° F; mean annual precipitation is 27.5 inches with about two-thirds of this occurring during the growing season; mean annual snowfall is 41.2 inches; the growing season averages 127 days. (Data from Amery, WI., weather bureau substation.)

Vegetation and use: Native vegetation was mixed northern hardwood and conifer forests. Most large areas have been cleared and are being used for general farming. This site is presently in alfalfa hay.

Parent material: Loamy outwash 20 to 40 inches thick and stratified sand and gravel.

Physiography: Nearly level to sloping outwash plains, stream terraces and morainic areas in glaciated region. Topography: Nearly level outwash plain; sample site is on a small rise with a 2 percent convex slope.

Drainage: Well drained.

Ground Water: Deep; over 5 feet.

Erosion: Slight.

Permeability: Moderate in solum and rapid in substratum. Described by: A. J. Klingelhoets and G. B. Lee, July 1975.

(Colors are for moist soil unless otherwise stated)

Ap 760210 0 to 18 cm (0 to 7 inches). Dark grayish brown (10YR 4/2) loam; moderate fine subangular blocky structure parting to moderate medium granular; friable; many roots; estimated 3 percent by volume of coarse fragments over 2 mm in diameter; slightly acid; abrupt smooth boundary.

760211 18 to 36 cm (7 to 14 inches). Brown (10YR 5/3) light losm; moderate medium platy structure; friable; estimated 3 percent by volume coarse fragments over 2 mm in diameter; many roots; slightly acid; clear wavy boundary.

A&B 760212 36 to 48 cm (14 to 19 inches). Brown (10YR 5/3) light loam (A2); weak coarse platy structure; friable; occupies about 55 percent of horizon as tongues 10 to 30 mm thick extending into or completely surrounding isolated remnants of dark yellowish brown (10YR 4/4) loam (B2t); moderate medium subangular blocky structure; firm; a few thin patchy clay films on faces of peds (B2t); estimated 5 percent by volume coarse fragments greater than 2 mm in diameter; many roots; medium acid; gradual wavy boundary.

B6A 760213 48 to 66 cm (19 to 26 inches). Dark brown (7.5YR 4/4) heavy loam (B2t); moderate medium subangular blocky structure; firm; occupies about 70 percent of the horizon; thin patchy clay films on most faces of peds (B2t); tongues of brown (10YR 5/3) loam (A2) extend to bottom of horizon; weak coarse platy structure; friable; estimated 5 percent by volume coarse fragments greater than 2 mm in diameter; many roots; medium acid; clear wavy boundary.

B2t 760214 66 to 81 cm (26 to 32 inches). Dark brown (7.5YR 4/4) light losm; weak and moderate subangular blocky structure; friable; few thin patchy clay films mostly on vertical faces of peds; many roots; medium acid; clear wavy boundary.

81 to 94 cm (32 to 37 inches). Dark brown and dark yellowish brown (7.5YR 4/4 and 10YR 4/4) loamy coarse sand; weak medium subangular blocky structure; estimated 12 percent by volume coarse fragments greater than 2 mm in diameter; many roots; medium acid; clear wavy boundary.

IICl 760216 94 to 122 cm (37 to 48 inches). Dark brown (7.5YR 4/4) coarse sand and fine gravel; single grained; loose; stratified; estimated 8 percent by volume coarse fragments greater than 2 mm in dismeter; few roots; medium acid: abrupt smooth boundary.

IIC2 760217 122 to 152 cm (48 to 60 inches). Brown and strong brown (7.5YR 5/4 and 5/6) coarse sand and fine gravel; single grained; loose; stratified; estimated 8 percent by volume coarse fragments greater than 2 mm in diameter; slightly acid.

Additional notes:

- 1. Much of the Onamia with little or no silt influence may be close to the coarse-loamy family.
- 2. pH's in field determined by Truog kit.

*This pedon has higher base saturation in the argillic horizon than that allowed for the Rosholt series.

SOIL Nos. S69WI-65-1 LOCATION Washburn County, Wisconsin

SOIL SURVEY LABORATORY Beltsville, Maryland

_ LAB. Nos. <u>698277 -</u> 698284

	T	1B1b						Size clas	s and parti	cle diametr	er (mm) 3A	1			_			
			Total		1		_	Sand		Si		Ī	l		382	Coer	se fragme	nts 381
Depth	Herizon	Sand	Silt	Clay	Very	Coarse	Medium	Fine	Very fine		let. III	int.II		<.074		2AZ		
(cm)	110	(2-0.05)	(0.05_	(= 0.002)	- coarre				(0.1~0.05)	0.05-0.02	_	. –	(2-0.1)	mm	Cm	> 2	2 - 19	19-76
•- /			0.002)	l	"- "		l Lof << 2 i		l	l	1 ().002)	1		Pct.		Pct.		t. of 6mm
5-0	01	NOT S	AMPLET		ĺ	<u> </u>	<u> </u>	<u> </u>	l		_	Ī						
0-3	Al	NOT 8	AMPLEI	1	l _	_			l .									
3-21	<u>A2</u>	65.3		9.0	6.5	16.5	17.1	17.9	7.4	11.4	14.3		57.9	38.7	_	5	5	0
21-48 48-69	Bhir Bir	67.3 67.1	26.5	6.2	4.6	13.4	18.4	20.8	10.1	12.7	13.8		57.2 56.4	38.0	0.85	23	14	9
69-81	A&B	83.4	12.9	8.9 3.7	4.5 8.4	12.5 22.3	18.0 24.7	21.5 21.1	10.7	12.3 6.8	11.7	33.9 23.1	76.4	39.0	0.84	24 22	18 13	9
81-112	B&A	69.3	26.2	4.5	8.2	18.0	20.9	12.3	10.0	18,8	7.4	29.5	59.3	36.2	0.83	23	17	6
112-137	B2t	75.5	18.1	6.4	4.9	15.1	21.0	23.7	10.8	10.3	7.8	32.8	64.7	30.3	0.87	18	16	ž
137-160	B3t	78.6	15.6	5.8	6.1	15.4	22.5	24.7	9.9	8.6	7.0	30.5	68.7	26.5	0.82	24	17	7
160-175+	C	74.3	19.2	6.5	4.8	15.2	21.2	23.1	10.0	11.2	8.0	32.2	64.3	31.2	0.85	50	16	14
	<u> </u>	Na Pvi		l	<u> </u>	 		Bulk densit	L		<u> </u>	later conte	<u> </u>	0		l	pH	<u> </u>
	6Ala			†						4D1	<u>`</u>			. 8El Resis-	4C1		1	
Depth	Organic carbon	6C5a Fe	6G5a Al	C-D	Carbonate as CaCO _t	Ext. Iron as Fe	Plasti	_ 4Ale	4A1h	0015		481c	482	tivity			8Clc	8C1#
(cm)		•	**	Al			city	³≼ bar	Oven dry	COLE		3≼ bar	15 bar	ohms-	WRD	(1:2)	(1:1)	(1:1)
	Pct.	Pct.	Pct.	Pct.	Pct.	Pct,	Index	g/cc	g/cc		Pct.	Pct.	Pct.	ст 60°F	in/in	CaCl ₂	KÇI	H ₂ O
3-21	6.45	† <u>* * * * * * * * * * * * * * * * * * *</u>		0.1	1	'0.6								OU F				
21-48	0.75	0.2	0.2	0.1		0.7	N.P.	1.57	1.64	0.02		9.0	3.1		0.09	4.4	4.0	5.1
48-69	0.50	0.2	0.2	0.2		8.8.		1.58	1,57	0.00		9.2	4.3		0.08	4.8	4.3	5.5
69-81	-	0.1	tr.	0.1		0.5		1.72	1.71	0.00		6.0	1.9		0.07	4.9	4.3	5.5
81-112 112-137	-			0.1		0.6		1.77	1.85	0.01		10.3 9.7	1.8	15000	0.15 0.13	4.9 5.0	4.3 4.2	5.6 5.7
137-160				tr.	<u> </u>	0.6	_	1.80	1.85	0.01		9.9	2.4	15000	0.14	5.0	4,2	5.7
160-175+	0.12			tr.		0.8		1.85	1.88	0.00		9.2	2.7	15000	0.12	4.9	4.1	5.5
		5.000		5B4a		6H2a	CE	<u> </u>	601e				tatios to cir	8D1	8D3		Base sat	andian.
	4	Extractet		<u> </u>		OFIZE	"	ec.	OGTE		Fine	⊢ —"	MICHON TO CH	1	603			
Depth	6№2e	6024	6P2b	6Q2b		Ext.	5A3a	5A6a	Ext.		clay <.0002	CEC	Ext.	15-ber	Ca/Mg		5C3	5C1
(cm)	Ca	Mg	Na	K	Sum	acidity	Sum		Ai I		mm	sum	iron	water	,.		Sum	NH ₄ OAc
		I		l	meq/100 g		cations	NH ^{J†} OYG	· .		Pet.						cations Pct.	Pct.
3-21	7.3	0.9	tr.	tr.	8.2	13.9	22.1	15.8	_		2.9	2.46	0.07				37	52
21-48	وَ.هَ	0.2	tr.	tr.	1.1	8.8	9.9	5.3	1.2		1.8	1.60		0.50			11	21
48-69	1.3	0.4	tr.	tr.	1.7	10.5	12.2	6.1			1.6	1.37	0.09	0.48	_		14	28
69-81	1.2	0.2	tr.	tr.	1.4	3.8	5.2 4.7	2.6			0.8	1.40	0.16	0.51			27 36	54 65
81-112	1.4 2.0	0.3	tr. tr.	tr.	2.6	3.0 1.9	4.5	3,4			0.7	1.04 0.70	0.11	0.40 0.34			58	76
112 - 137 137 - 160	2.0	0.6	tr.	tr.	2.6	2.6	5.2	3.7			1.9		0.10	0.41			50	70
160-175+	2.5	0.6	tr.	tr.	3.1	3.0	6.1	4.3			2.1	0.94	0.12	0.42			51	72
	_						· ·	-										
	ļ	<u> </u>									Ĺ	<u> </u>	Ļ					••
		frect	ion ans	. Terefa	717	I			Sand :	Fractio	on ana	lysis	7A1					
	Clay			TASTO	I WT													
Depth	Clay	< 0.002	2 111111	113212					. (0.2-0.0								
Depth (cm)	Clay	< 0.002 7A2	5 mm	*TÀ SIP	7A3					7B:	1							
	Clay	<0.007A2	2 minn 2 ayr	*TASTR	7A3 DTA		• •			7B; Petrog	l raphic				1			
	Clay	< 0.002 7A2	2 minn 2 ayr	*TASTR	7A3					7B:	l raphic /				ŢW			
(cm) 3-21 21-48	Clay	<0.002 7A2 X-re a/b/	2 minu 2 A.y /		7A3 DTA b/	QZ72,1	FE2,SP	:1,FD2		7B; Petrog: <u>b</u> Pc	l raphic / t.		 M* 1					
(cm) 3-21		< 0.000 7A3 X-re <u>a/b</u> , 3,CL1,1	ey MI1,QZ	L,FD1	7A3 DTA <u>b</u> / Pet.		FE2,SP FE2,ZR		0,MS2,I	7B Petrogr <u>b</u> Pc M1,EP	l raphic / t. l,TAl,	AUK 1,G						

a/Relative amounts (X-ray): 5 = dominant, 4 = abundant, 3 = moderate, 2 = small, 1 = trace.

b/Mineral code: VR = vermiculite, KK = kaolinite, CL = chlorite, MI = mica, QZ = quartz, FE = iron oxides,

SP = sphene, FD = feldspar, MS = muscovite, HN = hornblende, EP = epidote, TA = talc, AU = augite,

GN = garnet, ZR = zircon, MT = montmorillonite.

Soil classification: Typic Dystrochrept; coarse-loamy, mixed frigid.

Soil: Sarona taxadjunct* .

Soil No.: S69WI-65-1.

Location: Washburn County, Wisconsin; SE's, NE's, NE's, NE's, Sec. 9, T. 37 N., R. 10 W.; 200 yards southwest of junction of road with the lake.

Climate: Humid continental; mean annual temperature is about 45° F; mean annual precipitation is about 30 inches

and average frost-free season is 135 days.

Vegetation and land use: Native vegetation was mixed northern hardwood forest. About 50 percent of this soil is used for livestock pasture and crop production. Principal crops are corn, small grains, and forages.

Parent material: Acid loamy sand glacial till.

Physiography: Sloping to hilly glacial ground and end moraines.

Topography: Site is on a convex 5 percent slope near the top of a hill.

Drainage: Well drained. Ground water: Deep. Erosion: Slight.

Permeability: Moderate.

Described by: Paul H. Carroll

(Colors are for moist soil unless otherwise stated)

01 (not sampled) 5 to 0 cm (2 to 0 inches). Very dark brown (10YR 2/2) and very dark grayish brown (10YR 3/2) leaf mat; strongly acid; abrupt smooth boundary.

Al (not sampled) 0 to 3 cm (0 to 1 inch). Very dark brown (10YR 2/2) loam or sandy loam with many white sand grains that impart a salt-and-pepper appearance to the horizon; weak fine granular structure; very friable; common roots; strongly acid; abrupt smooth boundary.

69B277 3 to 21 cm (1 to 8 inches). Brown (7.5YR 4/2) and dark reddish gray (5YR 4/2) loam or sandy loam; weak fine subangular blocky structure; very friable; common roots; strongly acid; gradual wavy boundary.

Bhir 69B278 21 to 48 cm (8 to 19 inches). Dark brown (7.5YR 4/4) and reddish brown (5YR 4/4) loam or sandy loam; weak fine subangular blocky structure; very friable; common roots; strongly scid; gradual wavy boundary.

Bir 698279 48 to 69 cm (19 to 27 inches). Dark brown (7.5YR 4/4) sandy loam; weak fine and medium subangular blocky structure; friable; common roots; strongly acid; clear wavy boundary.

A&B 69B280 69 to 81 cm (27 to 32 inches). Dark reddish gray (5YR 4/2) logmy sand and reddish brown (5YR 4/3) light sandy loam; A2 material occupies 60 to 80 percent of the horizon and surrounds isolated remnants or upward extensions of sandy loam B2t horizon; weak thin platy structure in the A2 material and weak medium subangular blocky structure in the B2t material; very friable and friable, with the B2t material being slightly fragic; slightly higher clay content in the B2t than in the A2 portions of the horizon; contains 8 to 10 percent mostly gravel with some cobblestones; common roots; strongly acid; clear wavy boundary.

B&A 69B281 81 to 112 cm (32 to 44 inches). Dark reddish brown (5YR 3/4) sandy loam upward extensions of the B2t horizon occupy approximately 60 to 70 percent of the horizon, with tongues of the dark reddish gray (5YR 4/2) and reddish brown (5YR 4/3) loamy sand A2 material penetrating the B2t from the horizon above; weak fine and medium subangular blocky structure in the B2t portion of the horizon and very weak thin platy structure in the A2 portion; firm and friable; occasional clay films on faces of peds in the B2t portion; contains 8 to 10 percent by volume of gravel and cobblestones; few roots; medium acid; clear irregular boundary.

69B282 112 to 137 cm (44 to 54 inches). Dark reddish brown (5YR 3/4) sandy loam; weak and moderate medium subangular blocky structure with weakly expressed coarse platiness; firm; clay films are thin and patchy on faces of peds; occasional tongues of A2 material penetrate this horizon; few roots; slightly acid; clear wavy boundary.

B3t 69B283 137 to 160 cm (54 to 63 inches). Dark reddish brown (5YR 3/4) and reddish brown (5YR 4/4) loamy sand; weak coarse subangular blocky structure with weakly expressed coarse platiness; friable; to firm; few thin clay films on faces of peds; slightly acid; gradual wavy boundary.

C 69B284 160 to 175 cm (63 to 69 inches). Reddish brown (5YR 4/4) loamy sand or sandy loam; weak thick platy structure to massive; friable; slightly acid.

*This pedon lacks both spodic and argillic horizons; therefore it is a taxadjunct to the Sarona series.

	SOil Sarona taxadjunct	SOIL Nos. <u>\$69</u> WI-65-2	LOCATION Washburn County, Wisconsin
	SOIL SURVEY LABORATORY Beltsville, Mary		LAB. Nos69B285 - 69B292
	1B1b	Size class and particle did	
	Total Depth Horizon Sand Sift Cia	y Very Coarse Medium Fine Very fine	Silt 382 Coarsa fragments 381 2A2 2A2 2A2 3A 18 18 75
	12-9 251 10.05 1-00	·	
1.			
•			
	•		
. —			
		1	
- 	, ru		
u	F		
) par		Tabe .
	· .		
<u></u>			
Vi		1 1111	1 (2 1)
1 -			
'' ' '			
n(=			
_			
	1		

Soil classification: Typic Dystrochrept; coarse-loamy, mixed, frigid.

Soil: Sarona taxadjunct*.

Soil No.: \$69WI-65-2.

Location: Washburn County, Wisconsin; NE%, SE%, Sec. 32, T. 38 N., R. 10 W.; 150 yards south and 50 yards west of right-angle turn in road.

Climate: Humid continental; mean annual temperature is about 45° F; mean annual precipitation is about 30 inches; and average frost-free season is 135 days.

Vegetation and land use: Native vegetation was mixed hardwood forest. About 50 percent of this soil is cultivated or used for livestock pasture. Principal crops are corn, small grain, and forage.

Parent material: Acid loamy sand glacial till.

Physiography: Sloping to hilly glacial ground and end moraines.

Topography: Site is on a 6 percent convex slope near the top of a hill.

Drainage: Well drained.

Ground Water: Deep.

Erosion: Slight.

Permeability: Moderate.
Described by: Paul H. Carroll.

(Colors are for moist soils unless otherwise stated)

01 (Not sampled) 5 to 0 cm (2 to 0 inch). Very dark brown (10YR 2/2) mat of partially decayed leaves.

A21 (Not sampled) 0 to 5 cm (0 to 2 inches). Brown (7.5YR 4/2) losmy sand; very weak granular structure that becomes single grained at the upper boundary; very friable, becoming loose at the upper boundary; strongly acid; abrupt smooth boundary.

A22 69B285 5 to 13 cm (2 to 5 inches). Brown (7.5YR 4/2) and 5/3) sandy loam; weak fine subangular blocky structure; very friable; common roots; strongly acid; clear smooth boundary.

Bhir 69B286 13 to 41 cm (5 to 16 inches). Reddish brown (5YR 4/4) and dark brown (7.5YR 4/4) sandy loam; weak fine subangular blocky structure; very friable; common roots; medium acid; clear wavy boundary.

Bir 69B287 41 to 64 cm (16 to 25 inches). Dark brown (7.5YR 4/4) sandy loam; weak fine subangular blocky structure; friable; common roots; medium acid; clear wavy boundary.

69B288 64 to 87 cm (25 to 34 inches). Dark brown (7.5YR 4/4) and brown (7.5YR 5/4) eluviated loamy (A2 material) occupies 60 to 75 percent of this horizon and surrounds isolated remnants or upward extensions of reddish brown (5YR 4/4) and dark reddish brown (5YR 3/4) sandy loam argillic horizons; weak thin platy structure in the A2 material and weak medium subangular blocky atructure in the B2t material; very friable and friable with the B2t material being slightly fragic; contains 10 to 12 percent by volume of gravel and cobblestones; few roots; medium acid; clear wavy boundary.

B&A 69B289 87 to 127 cm (34 to 50 inches). Reddish brown (5YR 4/4) and dark reddish brown (5YR 3/4) sandy loam upward extensions of B2t material occupy approximately 60 to 70 percent of the horizon body, with tongues of brown (7.5YR 4/4) loamy sand A2 material penetrating the B2t from the horizon above; weak and moderate medium subangular blocky structure in the B2t material and weak medium platy structure in the A2 material; friable and firm; occasional clay films on faces of peds in the B2t material; contains 10 to 12 percent by volume of gravel and cobblestones; few roots; medium acid; clear irregular boundary.

127 to 152 cm (50 to 60 inches). Dark reddish brown (5YR 3/4) sandy loam; weak and moderate medium 69B290 and coarse subangular blocky structure with weakly-expressed coarse platiness; firm; thin continuous clay films on many faces of peds, patchy on others; few tongues of dark brown (7.5YR 4/4) light sandy loam penetrate this horizon and occupy 2 to 7 percent of the horizon body; contains 10 to 12 percent by volume of gravel and cobblestones; medium acid; gradual wavy boundary.

69B291 152 to 182 cm (60 to 72 inches). Reddish brown (5YR 4/4) and dark reddish brown (5YR 3/4) loamy sand; weak coarse subangular blocky structure to nearly massive with weakly-expressed coarse platiness throughout; friable; few clay films on faces of peds and clay bridging of sand grains; contains 10 to 12 percent by volume of cobblestones and gravel; medium acid.

69B292 182 to 203 cm (72 to 80 inches). Reddish brown (5YR 4/4) loamy sand; weak coarse subangular blocky structure to massive with weakly-expressed coarse platiness throughout; friable; contains 10 to 12 percent by volume of gravel and cobblestones; medium acid.

*This pedon lacks both spodic and argillic horizons; therefore, it is a taxadjunct to the Sarona series.

U. S. DEPARTMENT CF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

\$01L NC - - - - 574WI-83-3

CCURTY - - - OCGNTO

GENERAL METHODS- - - 14.1818.241,28

SAPPLE NOS. 741878-741883

	-																		
DEPTH	HOR I	ZON	SANC 2- -05	SILT -05- -002	CLAY LT -062	FINE CLAY LT .000	vcos 2- 2 1	CORS	SAND MEDS -5-	FNES -25-	VFNS •10-	COSI .05	-SILT- FNSI -02 - 0 02	VF S1 .005) SAND - 2 - -10	INTR II .2-	FINE CLAY TO CLAY	NON- CO3- CLAY	RATI 801 15- BAR TO
CH.			(- PC	T LT 21	IH) PCT	PCT	CLAY
000-015 015-038 038-082 082-096 096-147 147-167	CA2 OA3 EA4 OA5		97.6	1.5	.9		-1	10.3	46.0	37.4	3.8	1.5	TR		93.8				· ·
CEPTH	(PART I	CLE SI	JE AN	ALVSIS.		38. 381	1. 3821	i Ali	K DEN	STTV 1	· · · · · ·		:a co	MTENT-			OMAT E		
CH	VCL. GT 2	(= GT 75	75-2	WE! 0 20-5	5-2		20-2 PCT	1/3- BAR	4A1H GVEN DRY	401 COLE	481C	48 1C	482a 15- 8AR PCT	4C1		4E18	3A1A	8C1 A	8C11 1/2 CACI
000-015					TR		TR						50.0						
C15-C38 C38-C82 C82-C96 C96-147	0	0 0 0 0	0000	0	TR C C C TR		TR C C C TR	.47 .24 .23 .17	.74 .62 .71 .56		151 336 384 553	328 372	57.3 85.3 93.7 101					5.2 5.1 4.4 4.6 4.8	4.6 4.0 4.0
DEPTH (69 1A	C/N	6C2B EXT FE	TOTL	6NZE CA	602D MG	6PZB NA	6Q2B K	SUM EXTB	6H1A BACL TEA	661E KCL EXT	SA3A EXTB ACTY	5A6A NHAC	8D1 NHAC	TG	CA 5F1 SAT NHAC	(BASE 5C3 EXTB ACTY	SAT 5C1 NHA
CM	PCT	PCT		PCT	PCT	(ME(/ 100	G			;	CLAY	MG	PCT	PCT	PCT
060-015 015-038 036-082 082-096 096-147 147-167	34.1 34.4 32.5 38.2 43.8	2.34 2.38 2.91 2.88 2.88	15 14 11 13 16	·		40.1 41.5 35.3 39.4 35.8	13.2 14.2 11.9 12.8 12.3	-3	1.Ç	56.0 57.2 48.3 53.5 49.4	142		149	85.9 93.0 104 109		3.0 2.9 3.0 3.1 2.9	45 34 36	40 38 27 27 26	65 64 46 45
DEPTH (SATUR 8E1 REST OHM- CM	BC1B PH	ASTET	5D2 ESP	NA 5E SAR	SALT 805 TOTL SCLU	6F 1A	8A1A EC	6N1B CA	601B MG	6P18 ·	6018 K	611 A CO3	HC03	6K1A CL	6L1A 5C4) 6M1A NO3	4F1 LQID LMIT	4F2 PLST
CCG-Q15 Q15-Q38 Q38-Q82 Q82-Q96 Q96-147 147-167	1400 1406 1700	4.7 4.8 4.2 4.2 4.4	192 222 493 628 851			3600 2600 4500 4100 2700		2.91 1.90 1.53 1.03	13.7 9.0 7.9 5.4 2.4	11.0 7.3 5.6 3.8 1.8	.3 .2 .2 .2 .2	4.1 1.6 .7 .7	0 0 0 0	.0 .0 .3 .3	2.2 1.5 2.2 1.5		24.3 12.7 7.7 5.0		
CEPTH	8F	(STAT	E CF I	DECCPPO	SITION H	-HISTOS N) PH ecle	(BUL	K CEN	COLI	SV8S	(484	WATER 4810	CONTE	(T 1 2, 4C1	i L				
СМ		UARE	RUE	SCLUE	ILITY	CÁCL	. STAT		WET		STAT	REWT	BAI	R CM					
000-015 015-038 038-082 082-096 096-147 147-167	46 35		1 5 1 3	10YR 10YR 7.5YR 7.5YR	3/2 2/ 3.5/2	2 4.9 2 4.6 2 4.1 2 4.0	.39 .42 .22 .20	.51 .30	.13 .27	78 100 89 90 63	124 128 359 400 670	120 242 215 269	58. 62.	7 2 .37 1 .55))	 		 	
																····			

Soil classification: Typic Borosaprists; euic.

Series: Seelyeville. Pedon No.: S74WI-83-3.

Pedon No.: S74WI-83-3.

Location: Oconto County, Wisconsin; SW4, SE4, Sec. 4, T. 30 N., R. 18 E.; 600 feet east (opposite machine shed) of farm lane. About 45.1° north latitude and about 88.2° west longitude.

Climate: Humid continental. Mean annual temperature is 43.4° F; mean July temperature is 69.6° F; mean January temperature is 15.6° F; mean annual precipitation is 27.94 inches with nearly two-thirds of the precipitation falling during the growing season; total amount of snowfall is 47.9 inches; the growing season averages 119 days, but less in the organic areas (data from Crivitz High Falls, WI, weather bureau substation).

Parent material: Deposits of herbaceous organic material more than 51 inches thick.

Physiography: Large glacial lake basin with many scattered sand "islands,"

Vegetation: Area sampled was in potatoes and Cris variety of spring wheat.

Size of area: About 4,000 to 5,000 acres.

Distance to adjacent mineral soil: About 200 feet to nearest sand "island."

Depth to water table: 152 cm.

Microrelief: None

Subsidence: Estimated as moderate.

Soil temperature: Measured soil temperature of 15.2° C at 50 cm.

Described and sampled by: G.W. Hudelson, W.C. Lynn, W.E. McKinzie, G.B. Lee, and A.J. Klingelhoets on August 6, 1974. Samples were obtained from pit.

0 to 15 cm. Black (10YR 2/1) broken face, rubbed, or pressed sapric material; about 5-10 percent fiber, less than 5 percent rubbed; weak fine granular structure; yery friable; fibers primarily herbaceous; about 20 percent mineral soil material; common roots; pH 5.5 (Truog); abrupt smooth boundary.

15 to 38 cm. Black (10YR 2/0), black (10YR 2/1) rubbed or pressed sapric material; about 74L879 5-10 percent fiber, less than 5 percent rubbed; weak medium subangular blocky structure parting to weak fine subangular blocky structure; friable; fibers primarily herbaceous; about 25 percent mineral soil material; common roots; pH 5.5 (Truog); abrupt smooth boundary.

Oa3 74L880 38 to 82 cm. Black (10YR 2/0), black (10YR 2/1) rubbed or pressed sapric material; about 5-10 percent fibers, less than 5 percent rubbed; weak coarse prismatic structure parting to moderate coarse subangular blocky structure; friable; fibers primarily herbaceous; about 2.5 percent mineral soil material; common roots; pH 5.5 (Truog); abrupt wavy boundary.

Oa4 74L881 82 to 96 cm. Very dark brown (10YR 2/2), black (10YR 2/1) rubbed, very dark brown (10YR 2/2) pressed sapric material; about 25 percent fiber, 5-10 percent rubbed; weak coarse platy structure with matted areas; very friable; fibers primarily herbaceous, about 20 percent mineral soil material; few roots; pH 5.5 (Truog); clear wavy boundary.

Oa5 741.882 96 to 147 cm. Very dark grayish brown (10YR 3/2), black (10YR 2/1) rubbed, very dark grayish brown (10YR 3/2) pressed hemic material; about 60 percent fiber, 5 to 10 percent rubbed; massive; very friable; fibers primarily herbaceous; about 20 percent mineral soil material; pH 5.8 (Truog); abrupt smooth boundary.

147 to 167 cm. Grayish brown (10YR 4/2) sand; few fine faint brown (10YR 5/3) mottles; single grained; loose; pH 7.0 (Truog).

- 1. In Oa3, iron segregations along old root channels are dark reddish brown (5YR 3/4 and 3/3).
- 2. In 0a4, spots and streaks of soft iron (limonite) segregations, 1/2 to 3 cm in diameter, are dark reddish brown (2.5YR 3/4), dark red (2.5YR 3/6), dark reddish brown (5YR 3/3), and strong brown (7.5YR 5/6).
- 3. In C horizon, 3/4 inch mixed sedge and limmic material at contact of sand).

U. S. DEPARTMENT OF AGRICULTURE SDIL CONSERVATION SERVICE, MTSC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S70WIS-71-1 COUNTY - - - WOOD

GENERAL METHODS- - -14, 1818, 241, 28

SAMPLE NOS. 701912-701923

DEPTH	HORI	 ZON	(PART IC		E ANAL		T ZMM	, 3Al,	JALA,	3A1B -)	RATIO
													-SILT-				FINE	NON-	801
			SAND		CLAY		vcos				VENS		FNST		TEXT	11	CLAY	C 03 -	15-
			2- .05	.05- .002	LT -002	LT .000	2- 2 l	1- •5	.5- .25	.25- .10	.10-	.05 .02	.02 .002		SAND	-2-	10	CLAY	
CM			(- °- °-											-002		- 02	CLAY PGT	PCT	TO
			<u></u> -																
000-7 007-16	A11 A12		7.0 5.8	74.0	24.7		.5	1.4	1.5	1.6	2.0	19.5 20.9			5.0 3.9	22.2			.98
016-34	- B210		4.8	70.8			.0	.5	. 8		2.9	30.9			1.9	34.1			1.14
034-53	822		6.7		19.6			.8	1.4	1.0		37.7			3.3	41.5			.46
053-80	8230		7.9	73.7	18.4		.2			1.5	3.1	40.1				43.B			.47
080-96	2824		87.3	8.0	4.7		.8	18.0	39.6		3.3	5.2				14.7			.34
096-124	3825	(TB)	34.9	22.6	42.5		2.4		7.4	11.0	7.4	6.5	16.1		27.5				.32
124-160	3826		30.4				2.0			9.3	6.5	6.1			23.9				.31
160-180	383(18)	40.4	27.9			4.7	10.6	5.9		8.9	7.9			31.5	22.7			.43
180-200			34.0	34.7 36.4	20.9 29.6		9	2.6 4.3	3.3	15.7	21.9	14.0				46.8			. 61
200-240 240-295			51.6	29.7			2.3 4.3		3.7 5.3	10.6	13.1	11.3			20.9 33.1	31.3			.61
270	3,53		71.0	_,,,,			***	0.0	,,,	,	2012		2010		3361	7207			.02
DEPTH (PARTIC	: E SI	Z	LYSIS	. MM.	38. 381	382) (Bu	K DEN)(ER CO	ITENT-	1	CARRO	MATE	(PH	
											481C	4B1C		4C1	•	6E 18		8C1A	
	GT	ĢŦ	75-20	20-5	5-2	LŤ		1/3-	OVEN	COLE	1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
	2	75				.074	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	-002	H20	CACL
CM .	PC T	PCT	(PCT (LT 75	:	L 120	G/CC	G/CC		PCT	PCT	PCT	CM		PC T	PCT		
00-7	TR	0	0	TR	TR	94	TR	.85	1.05	.075	61.5	59.8	24.2	-31	3.58			5.8	5.5
107-16	TR	0	TR	TR	TR	95	TR	.93	1.07	.048	55.7	54.7		- 29	5.68			5.2	5.0
16-34	TR	0	0	TR	TR	97	TR	1.61	1.76	- 03 1	23.6	22.1		-18	3.18			6.0	5.7
34-53	TR	0	0	TR	TR	96		1.52	1.64	.026	26.4	24.9		-24	1.49			7.3	6.9
53-80	TR	0	0	TR	TR	95		1.62	1.75	• 027	22.6	21.4		-21	2.58			7.5	7.0
80-96	1 3	ŏ	TR	1	1	14 66		1.50A					1.6		7.68			6.6	5.9
96-124 24-160	TR	ŏ	TR	TR	i	72		1.50A					14.9					5.6	5.0
60-180	TR	ŏ	Ö	TR	TŘ	64		1.50A					13.6					5.8	5.2
80-200	ŤŘ	ŏ	ŏ	Ö	ŤŘ	68	TR		1.66	.045	34.2	30.4		- 20	1.68			6.3	5.9
00-240	TR	0	0	TR	TR	74	TR						18.0					7.2	6.5
240-295	TR	0	0	TR	1	58	1						12.2					7.2	6.6
DEPTH (C	JRGANIO 6414	6814		6C28	PHUS	1E			4362 34 6Q2B		SHLA	AL 6GLE		5A6A	RATIO 8D1	BD3	CA 5Fl	SC3	SAT) SC1
	ORGN	NITS		EXT	tori	CA	MG	NA	K	SUM	BACL	KCL	EXTB	NHAC	NHAC	CA	SAT	EXTE	NHAC
	CARB	.,		FE							TEA	EXT	ACTY		TO	TO	NHAC	ACTY	
	PC T	PCT		PC T					ME					1	CLAY	MG	PET	PCT	PCT
000-7	1.0CC	.766		0.5			10.3	0.3	0.4	38.3	31.6		69.9	48.9	1.98	2.7		55	78
	9.59	.676		0.6			11.3	0.3	0.3	31.0	34.7		65.7	45.4	2.25	1.7	42	47	68
16-34	0.87	.066	13	0.Z		9.3	9.6		0.4	19.5	5.3		24.6	19.9	0.82	1.0	47	79	98
	0.32	-022		0.5		8.5	9.5	0.2	0.4	18.6	2.1		20.7	15.8	0.81	0.9	54	90	116
	0.23			0.5		8.3	8.9	0.2	0.5	17.9	1.8		19.7	14.0	0.76	0.9	59	91	126
	0.03			0.4		1.5	1.7	0.1 TR	0.1	3.4	0.6		4.0 9.2	3.1	0.66	0.9	48	85 67	110
)96-124 26-160				6.0 6.0		2.7 2.5	3.3	TR	0.2	6.2	3.0 4.1		10-1	6.1 -6.2	0.14	0.8	40	32_	97
60-180				4.7		3.7	4.7	TR	0.4	8.8	2.9		11.7	9.7	0,31	0.8	38	75	
80-200				6.5		6.3	7.9	0.1	0.7	15.0	3.7		18.7	16.4	0.78	0.8	38	80	9j
00-240				5.6		7.5	9.0	0.1	0.8	17.4	2.4		19.8	17.2	0.58	0.8	44	88	101
40-295	0.02			6.1		4.2	3.5	0.1	0.5	8.3	1.3		9.6	9.6	0.51	1.2	44	86	84
					1.00									- FA1-)	ATTFOR	FRC
	SATUR			NA 5D2	NA SE	SALT 8D5											6M1A		
	SATURA 8E1	BC1B	84	5D2	5€	8D5	GYP 6Fla	BALA	ANIB	6110	6PLB	601B	611A	AILA	6K1A	6L 1A	6M1A NO3	4F1	4F 2
	SATURA 8E1 4 REST	BC1B					6F1A								6K1A		MO3		4F2 PLST
CM	SATURA 8E1 8 REST OHM-	PH	8A H2O	5D2	5€	8D5 TOTL SOLU	6F1A	BA1A EC	6NEB CA	6018 MG	6PIB NA	601B K	611A	HCD3	6KIA CL	6L 1A 504	NO3	4F1 L010	4F2 PLST
CM	SATURA 8E1 8 REST OHM-	PH	8A H2O	5D2 ESP	5€	8D5 TOTL SOLU	6F1A	BALA EC MMHOS/	6NEB CA	6018 MG	6PIB NA	601B K	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 100-7	SATURA 8E1 8 REST OHM-	PH	8A H2O	5D2 ESP	5€	8D5 TOTL SOLU	6F1A	BALA EC MMHOS/	6NEB CA	6018 MG	6PIB NA	601B K	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 100-7 107-16	SATURA 8E1 8 REST OHM-	PH	8A H2O	5D2 ESP	5€	8D5 TOTL SOLU	6F1A	BALA EC MMHOS/	6NEB CA	6018 MG	6PIB NA	601B K	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 100-7 107-16 16-34	SATURA 8E1 (REST OHM- CM	PH	8A H2O	5D2 ESP	5€	8D5 TOTL SOLU	6F1A	BAIA EC MMHOS/ CM	6NEB CA	6018 MG	6PIB NA	601B K	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 100-7 107-16 16-34 134-53	SATURA 8E1 (REST OHM- CM	BC18 PH	8A H2O PCT	502 ESP PCT	5€	8D5 TOTE SOLU PPM	6F1A	BALA EC MMHOS/	GNEB CA	6018 MG	6PIB NA	6018 K	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 	SATURA 8E1 (REST OHM- CM	BC18 PH	8A H2O PCT	502 ESP PCT	5€	8D5 TOTL SOLU PPH 200	6F1A	BAIA EC MMHOS/ CM CM	6NIB CA (6018 MG	6P18 NA 	6018 K - MED - TR	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 100-7 107-16 116-34 134-53 153-80 180-96 196-124	SATURA 8E1 (REST OHM- CM	7,0	8A H2O PCT	502 ESP PCT	5€	8D5 TOTE SOLU PPM	6F1A	BAIA EC MMHOS/ CM	GNEB CA	6018 MG	6PIB NA	6018 K	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 00-7 07-16 16-34 34-53 53-80 80-96 96-124 24-160	SATURA BE1 (REST OHM- CM	7,0	8A H2O PCT 40-3	502 ESP PCT	5€	8D5 TOTL SOLU PPH 200	6F1A	BAIA EC MMHOS/ CM CM	6NIB CA (6018 MG	6P18 NA 	6018 K - MED - TR	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 	SATURA BE1 (REST OHM- CM	7,0	8A H2O PCT 40-3	502 ESP PCT	5€	8D5 TOTL SOLU PPH 200	6F1A	BAIA EC MMHOS/ CM CM	6NIB CA (6018 MG	6P18 NA 	6018 K - MED - TR	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 	SATURA BE1 (REST OHM- CM	7,0	8A H2O PCT 40-3	502 ESP PCT	5€	8D5 TOTL SOLU PPH 200	6F1A	BAIA EC MMHOS/ CM CM	6NIB CA (6018 MG	6P18 NA 	6018 K - MED - TR	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST
CM 100-7 107-16 116-34 134-53 153-80 180-96 196-124 24-160	SATURA BE1 (REST OHM- CM	7,0	8A H2O PCT 40-3	502 ESP PCT	5€	8D5 TOTL SOLU PPH 200	6F1A	BAIA EC MMHOS/ CM CM	6NIB CA (6018 MG	6P18 NA 	6018 K - MED - TR	611A C03	HCD3	6KIA CL	6L 1A 504	NO3	4F1 LOID LMIT	4F2 PLST

⁽A) ESTIMATED.

(B) MICRO-PENETRATION RESISTANCE - A ROD D.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10- BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (Kg) AND NOT ESTIMATES OF UNCOMFINED COMPRESSIVE STRENGTM.

(C) ORGANIC CARBON IS 19 KG/M SQ TO A DEPTH OF 1 M (6A).

Soil classification: Mollic Haplaquept; fine-silty over clayey, mixed, frigid.

Soil: Sherry variant.

870WI-71-1 Soil No.:

Location: Wood County, Wisconsin; NWs, NWs, Sec. 12, T. 23 N., R. 6 E.

Climate: Humid continental; mean annual temperature about 43° F; mean annual precipitation about 30 inches; and frost-free season is about 133 days.

Vegetation and land use: Original vegetation was sedges and water tolerant trees. Much of this soil is in pasture

and woodland. Small areas are cleared for general farming.

Parent material: Silty sediments over clayey residuum from micaceous schists.

Physiography: Rock-controlled lowlands.

Topography: Nearly level site with 1 percent slope.

Drainage: Poorly drained. Ground water: 2 meters.

Erosion: None

Permeability: Moderate to 80 cm; slow or very slow to 160 cm. Described by: Paul H. Carroll

(Colors are for moist conditions unless otherwise stated)

All 701912 0 to 7 cm (0 to 3 inches). Black (10YR 2/1) silt loam; weak fine subangular blocky structure; friable; many fine fibrous roots; slightly acid; abrupt smooth boundary.

A12 701.913 7 to 16 cm (3 to 6 inches). Black (10YR 2/1) silt loam: moderate fine and medium subangular blocky

B21g 70L914 16 to 34 cm (6 to 13 inches). Olive gray (5Y 5/2) silt loam with common fine prominent mottles of strong brown (7.5YR 5/6-5/8) and yellowish red (5YR 5/6-5/8) mostly along root channels; weak medium angular and subangular blocky structure displaying very weak thin platy structure; firm; neutral; gradual wavy boundary.

B22g 70L915 34 to 53 cm (13 to 21 inches). Olive gray (5Y 5/2) silt loam with many fine prominent mottles of strong brown (7.5YR 5/6-5/8) and yellowish red (5YR 5/6-5/8) mostly along root channels; weak medium angular and subangular blocky structure displaying very weak thin platy structure; friable; neutral; gradual wavy boundary.

B23g 701916 53 to 80 cm (21 to 31 inches). Olive gray (5Y 5/2) silt loam with common fine prominent mottles of strong brown (7.5YR 4/6-4/8) and yellowish red (5YR 4/6-4/8) mostly along old root channels; weak medium subangular blocky structure; friable; neutral; abrupt wavy boundary.

IIR24 70L917 80 to 96 cm (31 to 38 inches). Reddish brown (5YR 5/4-4/4) medium sand; single grained; loose; alightly acid; abrupt wavy boundary.

IIIB25(tb) 701918 96 to 124 cm (38 to 49 inches). Dusky red (10R 3/4) clay; weak coarse prismatic structure; very firm; continuous thin clay films on faces of prisms; 1 to 2 percent fine and medium subrounded polished quartz pebbles; slightly acid; abrupt wavy boundary.

IIIB26(tb) 70L919 124 to 160 cm (49 to 63 inches). Dusky red (10R 3/4) clay; weak coarse prismatic structure; very firm; common thin clay films on faces of prisms; 1 to 2 percent fine and medium subrounded polished quartz pebbles; slightly acid; clear wavy boundary.

IIIB3(tb) 701920 160 to 180 cm (63 to 71 inches). Olive brown (2.57 4/4), light yellowish brown (2.57 6/4), brown (10YR 5/3) and yellowish brown (10YR 5/4) sandy clay losm; weak medium angular blocky struckure; firm; thin,

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MISC NATIONAL SOIL SURVEY LABORATORY LINCOLN, NEBRASKA

SOIL NO - - - - - S70WIS-71-4 COUNTY - - - WOOD

GENERAL METHODS- - - 1A, 1818, 241, 28 SAMPLE NOS. 70L943-70L951

			,		.,							-							
DEPTH											Y\$15, L								
•	-					FINE	(-SAND -		1) (·	SILT-		FAML	INTR			
			SAND	SILT	CLAY	CLAY	ACOS	CORS	MEDS	FNES	VFNS - 10-	COS 1	FNSI	VFS I	TEXT	11		C03~	
			2-	.05-	LT	LŢ	2-	1-	. 5-	.25-	• 10~	.05	. OZ	-005	- SAND	. 2-	. TO	CLAY	
			.05	-002	*005	.000	2 1	.5	-25	-10	.05 MM	-02	- 002	.002	21	-02	CLAY		to
CM			(PC	T LT 2	MM							PCT	
00-10	API		1) ^	43 b	25 1	10.6	.4	2.2	3 0	2.4	2.0	27.2	36.7	9.5	a . A	31.2			.59
10-23	AP2			63.1	24.3			2.5	3.5				35.5	8.6	9.4	31.9			
23-35	81			60.9	24.9			2.7				26.2				30.7	36		-54
35-52	821			55.5							3.5	28.3	27.2	3.4		33.6			4
52-83	2822			25.4	14.6			12.8				13.0		2.0		25.1			.41
83-124			74.2	16.3	9.5	5.1		14.6				10.6	5.7	1.1	65.9	27.7	54		-46
	2B 32		32.9	50.3	16.8	7.5	2.0	4.8			10.1	15.1	35.2	4.5	22.0	31.2	45		-6
	2 C 1			48.5	18.2								34.4	4-4	24.0	28.8			• 7
71-211	2 C 2		30.3	52.3	17.4	7.5	3.2	6.0	3.5	7.4	10.2	18.6	33.5	3.4	20.1	33.4	43		-50
PTH	(PARTI	CLE S	IZE AN	LYSIS	MM.	3B, 3B	1, 382) (80	LK DEN	SITY)(WAT	ER CON	ITENT-	1	CARBO	DNATE	CPH	i1
	VOL.	(WE!	IGHT -) 4A1D	4A1H	401	481C	481C	482	461		6E 18	3A1A	8C1A	8C 11
			75-20	20-5	5-2	LT	20-2	1/3-	OVEN			1/3-		WRD		LT	LT	1/1	1/2
	2	75				-074	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2		HSD	CAC
M	PCT	PCT	(- PET (T 75) LT20	G/CC	G/CC		PCT		PCT	LP		PC 1	PCT		
0-10	TR	0	0	TR	TR	91	TR	1.08	1.20	.037	37.0	35.9	14.8	.23	2 . 88	}		4.4	4.
		ŏ	ŏ	TR	TR	90		1.15		.040	36.2	37.5	13.0	. 29	2 - 88 3 - 68)		4.5	4.
3-35		0		TR	TR			1.45		.032	31.1		11.4	.26	3.00			4.8	4.
5-52	1	0	0	TR	1	84		1.47			27.9		12.1	.20	2.0			5.1	
2-83		. 0	TR TR	4	7	39		1-61			17.3	15.8		.13				6.1	5.
3-124		0	TR	-7	14	25	20	1.80	1.91	-017	13.9	11.4		-11	4.00	3 .		6.5	6.
4-141		U	0	TR	Z	72 66	. ?	1.80 1.70A 1.70A					10.3					6.6	6.
1-171 1-211		0	V	TR 1 0	٠	75	- 7	1.68	1.03	.020	23.0	21.6		. 22	2.36	ı		6.8	6.
	•	٧.	•	•	•.	.,,	•		****	,	2,00		•••			•			
	~~~~~				0405		 - TO ACT	ABLE B	ACES S	844		AL		EVELL	RATIO	PATIO	CA	(BASE	SAT
PTH C			C/N								6HIA		5A3A					5C 3	SCI
		NITG	4/H	EXT		CA	MG		K		BACL	KCL		NHAC			SAT	EXTE	NHA
	CARB			FE		٠	•••				TEA	EXT	ACTY		TO.	TO	NHAC	ACTY	
CM	PCT	PCT		PCT						Q / 10	0 G- •				CLAY			PCT	PCT
																	35	42	5
	4.210		8 12	0.5		9.0	3.7	0.3			18.8	1.3	32.3 29.7	27.7	1.02			39	5
	3.24		7 12	0.5		7.7	3.9	0.2			18.0				0.75	2.3 1.6		51	3
	0.53	.07		1.0		0.2	6.7	0.2	0.4	16.5	11.6 7.7		24.2			1,4		66	ĭ
	0.07	.01	ĭ	1.4		6.4	4.0	0.1		10.6					0.77	1.6	57	74	ě
	0.04		•	1.4		3.5	2.4	TR					8.2	6.2		1.5		74	9
	0.08			2.1		12.6	6.7	0.1			2.7		22.6	19.8		1.9	44	88	10
	0.07			2.1		8.9	5.5	0.2	0.4		1.6			14.8	0.61	1.6		90	10
1-211	0.03			2.3		9.0 7.7 7.2 9.2 6.4 3.5 12.6 8.9 7.9	4.7	0.2	0.4	13.2	1-2		14.4	12.7	0.73	1.7	62	92	10
PTH	( SATUR	ATED	PASTEI				GYP	(			SATURA	ATION I	EXTRACT	BA1-			)	ATTERB	ERG
	8E 1	8C1B	8A	5D2	5E	805	6FIA	BALA	6N1B	6018	6PIB	601B	611A	6J1A	6K1A	6L 1A	6M1 A	4F1	472
	REST	_PH	H20	£șe	SAR.			EC		86				HEDD.	بدخلاب	602.	`MJ	_1010	ويجر
	OHM-					SOLU		MMHOS/									(	LMIT	INDX
CM	CM		PCT	PCT		PPM	<b>PCT</b>	CM				- PEU .	, Lile!	· ·			}	, FUI	
0-10						<b>_</b> _												480	. 11
0-23																			
3-35																			
5-52																		34.0	_
2-83												TR						24D	7
3-124		6.1	17.1			20		0.15	0.6	0.5	0.3	IK							
4-141																			
61-171 71-211																		410	16
71-211																			

⁽A) ESTIMATED.

(B) MICRO-PENETRATION RESISTANCE - A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 1/10- BAR, A DISTANCE OF 0.6 CM USING A POCKET PENETROMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCONFINED COMPRESSIVE STRENGTH.

(C) ORGANIC CARBON IS 11 KG/M SQ TO A DEPTH OF 1 M (6A).

(D) DETERMINED BY SOIL MECHANICS LAB - SCS, LINCOLN, NE.

Soil classification: Aeric Haplaquept; coarse-loamy, mixed, nonacid, frigid.

Soil: Sherry taxadjunct*.

Soil No.: S70MI-71-4.

Location: Wood County, Wisconsin; NWs, NWs, NWs, Sec. 4, T. 24 N., R. 5 E.; 200 feet south of county road.

Climate: Humid continental; mean annual temperature is about 43° F, mean annual precipitation is about 30 inches; and frost-free season is about 133 days.

Vegetation and land use: Native vegetation was sedge and water-tolerant trees. Much of this land is idle or in forest. Some areas are cleared and used for general farming.

Parent material: Thin silty sediments over losmy residuum from micaceous schist.

Physiography: Depressional or nearly level areas in rock-controlled upland.

Topography: Nearly level site with I percent slope in a pasture.

Drainage: Poorly drained.

Ground water: Deep - perched water table exists near the surface for short periods.

Erosion: None

Permeability: Moderately slow to slow. Described by: Paul H. Carroll

(Colors are for moist conditions unless otherwise stated)

Apl 70L943 0 to 10 cm (0 to 4 inches). Black (10YR 2/1) and very dark brown (10YR 2/2) silt losm, grayish brown (10YR 5/2) dry; common fine prominent mottles of strong brown (7.5YR 4/6-4/8); moderate fine subangular blocky structure; friable; strongly acid; clear wavy boundary.

Ap2 70L944 10 to 23 cm (4 to 9 inches). Very dark gray (10YR 3/1) silt loss mixed with a small amount of dark gray (10YR 4/1) from the B1 horizon below and having many fine prominent mottles of yellowish red (5YR 4/6-4/8); weak fine subangular blocky structure; friable; strongly acid; abrupt smooth boundary.

Bl 70L945 23 to 35 cm (9 to 14 inches). Dark gray (10YR 4/1) heavy silt loam with many fine and medium prominent mottles of strong brown (7.5YR 5/6-5/8) and yellowish red (5YR 5/6-5/8); weak medium subangular blocky structure; firm; few thin interfingers of clean silt from an old A2 horizon above; few black (10YR 2/1) organic stains on faces of some peds; strongly scid; clear wavy boundary.

B21t 701946 35 to 52 cm (14 to 20 inches). Dark gray (10YR 4/1) light silty clay loam with many fine and medium prominent mottles of strong brown (7.5YR 5/6-5/8) and yellowish red (5YR 5/6-5/8); weak medium angular and subangular blocky structure; firm; few thin clay films on faces of peds and in continuous tubular pores; medium acid; clear wavy boundary.

IIB22t 70L947 52 to 83 cm (20 to 33 inches.) Variegated yallowish brown (10YR 5/6-5/8), strong brown (7.5YR 5/6-5/8), dark yallowish brown (10YR 4/4) and dark brown (7.5YR 4/4) sandy clay loam with few medium prominent mottles of brown (7.5YR 4/2-5/2); moderate medium angular blocky structure; very firm; meny thin dark brown (7.5YR 3/2) clay films on faces of peds and in tubular pores; slightly acid; gradual wavy boundary.

IIB31t 701948 83 to 124 cm (33 to 49 inches). Dark brown (7.5YR 4/4) and reddish brown (5YR 4/4) sandy losm; weak medium and coarse subangular blocky structure; friable; few thin clay films on faces of peds and as clay bridging of sand grains; neutral; clear wavy boundary.

IIB32t 701949 124 to 141 cm (49 to 56 inches). Reddish brown (5YR 4/4) and dark reddish brown (2.5YR 3/4) loam; weak medium subangular blocky structure; firm; few thin dark reddish brown (5YR 3/4) clay films on faces of peds and in tubular pores; neutral; clear wavy boundary.

11C1 70L950 141 to 171 cm (56 to 68 inches). Dark reddish brown (5YR 3/2) and dark brown (7.5YR 3/2), brown (7.5YR 4/2-5/2) rubbed (pearly luster) loss; weak medium and coarse platy structure; firm; few thin clay films in root pores; neutral; clear wavy boundary.

IIC2 701951 171 to 211 cm (68 to 84 inches). Variegated dark reddish brown (5YR 3/2-3/3), (pearly luster on rubbing), yellowish brown (10YR 5/6-3/8) and olive (5Y 4/3) loam; weak medium and coarse platy structure; firm; few thin clay films in root pores; neutral.

Additional notes: Temperature measurements: 50 cm depth - 14.2° C. 100 cm depth - 12.7° C. 150 cm depth - 11.5° C.

*This pedon lacks an argillic horizon; therefore, it is a taxadjunct to the Sherry series.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE, MYSC NATIONAL SOIL SURVEY LABORATORY LINGOLN, NEBRASKA

SOIL NO - - - - - 5721-21-7

CCURTY - - - FOREST

GENERAL METHODS- - -14.1818.2A1.28

SAPPLE NOS. 721860-721868

																			•
CEPTH	HOR 1	ZON	(					PARTIC	LE SIZ	E ANAL	YSIS,	LT 2MM	3A1,	3AlA,	3A18 -				RATI
			SANC	SILT	CLAY				SAND -								FINE		801
			2-			LT	5- AC02	1-	MEDS	.25-			-02	*002-		.2-	CLAY	C03-	15
						-Č002		.5	.25	.10	.05	-02	-002		.10		CLAY	CLAY	TO
CM			(						PC1		HH						PCT	PCT	
000-5			17.9	71.9	10.2	3.5	.9	3.2	3.7	2.6	7.5	36.6	35.3	<del></del>	10.4	45.0	34		
C05-10	AZ		10.3			1.5	1.7			2.3	7.4		37.0		10.9				
010-20		HIR	19.1		8.0	1.0	1.4	3.4		2.6	8.3	37.8	35.1			47.1			
C20-36	822		19.3			. 3	.9	3.1		2.4	9.5	39.3			9.8	49.7	-5		
036-59	4.5		17.8			.7	.9	2.3		2.1	9.7	38.6				49.2	9		
05 <del>9-</del> 75	A&B	•	20.8	65.7		3.3	1.2			2.5	9.7	35.3				45.9	24		. 4
075-96	26.5	1 T	32.8	54.5	12.7	3.8	2.3	7.2		4.9	10.3	30.4	23.9		22.5		30		-4
C96-113		21	57.1	34.0	8.9	2.2	5.3	16.9		9.8	6.6	18.6	15.4		50.5	27.8	25		- 4
113-165	5C		94.2	3.6	2.2	.8	15.3	37.3	25.8	13.8	2.0	1-6	2.0		92.2	7.6	36		-5
														·					
CEPTH						381						- ~WATI 481C		NTENT-	1		STANC ALAE	(→ -PI	
	6T	`GT		20-5				1/3-			1/10	1/3-	15-	WRD		LT	LT	1/1	1/2
	2	75	, , , , , , , , , , , , , , , , , , ,			.074	PCT	BAR		****	BAR	BAR	BAR	CH/		ž	-002	H20	CAC
CN	PCT		(	- PCT	LT 75 ·	',	LT20				PCT	PCT		CM			PCT		CHU
 000-5	1	q	3	l	1	84	2	1.G A					8.6					5.2	4.
CO5-10	2	ē	3	TR	•	82		1.1 A					3.7					4.8	4.
010-20	ž	ē	õ	.5	2	85	4	1.19	1.26	.019	36.2	32.0	6.9	.29	.76	3		4.7	7.
C20-36	2	Č	Ö	ž		86	4	1.18			39.0	31.9	5.4	.31	1.10			4-8	4.
036-59	1	•	0	1	1	89		1.4 A					5.3					4.9	4.
C59-75	1	e	TR	1	2	86	3	1.57	1.62	-010	22.6	21.3	6.5	.23	4.1	3		4.9	4-
075-96	5	Q	5	4	3	67	7	1.59	1.67	-016	22.6	20.4	6.1	.22	3.10	3		4.9	4.
¢9 <del>6-</del> 113	2C	72	10	9	8	35		1.81	1.89	.013	13.6	12.0	3.9	.13	6.38	)		4.9	4-
113-165	45	5	20	20	10	3	37	1.6 A					1.3					5.1	4-
													<del></del>						
CEPTH (	CRGANI 6Ala			6C28	PHOS	(EX		48LE 8/ 6928		4A	ACTY 6H1A	AL 6G1E	ECAT 5A3A	EXCH) SA 6A	RATIO 8D1	RATIO 803	CA 5F1	(BASI	SAT
	ORGN	NI TC		EXT	TOTL	CA	WE	RA	K	SUM	BACL	KCF	EXTB	NHAC	MHAC	CA	SAT	EXTR	
	CARB	WI 14		FÉ	1416		-	~~	•	EXTR		EXT	ACTY	MWC	TC	TO	NHAC	ACTY	MIA
CM	PCT	PCT		PCT	PCT (				MEQ					1		MG	PCT	PCT	PCT
000-5	3.73C	.27	B 13	.8.	·	8.5	1.8	.1	.4	10.8	11.8	-1	22.6	17.7	1.74	4.7	48	48	
C05-10	. 27	. C7				1.9	.5	.i		2.7	7.1	1.4	9.8	8.4	1.09	3.8	23	28	3
010-20	1.81	.11		1.4		1.5	-3		.2	2.1	19.8	3.3	21.9	14.7	1.84	5.0	10	10	1
C2G-36	1.24	. (9		1.0		6	-i	.ī		.9	16-1	2.7	17.0	11.3	1.85	6.0	- 5	- 5	•
036-59	•31			1.1		1.5	.5	.1		2.2	10.4	3,6	12.6	9.8	1.20	3.0	15	17	2
C59-75	-12			1.0		3.1	1.3	.1	.2	4.7	9.1	3.3	13.8	11.2	. 83	2.4	. 28	34	4.
075-96	-12			1.3		3.3	1.5	-1		5.1	8.3	2.1	13.4	10.9	-86	2.2	30	36	4
C96-113	. C5			. 9		2.7	1.3	.1		4.3	4.4	1.2	8.7	7.6	. 85	2.1	36	49	5
113-165																			
CEPTH	(SATUR		PASTE) Ba	NA 502				AEAB			SATURA 6P18					6L1A	) .	ATTERE 4F1	
	REST	PH	HZC	ESP		TCTL	OL TH	EC	CA	WE	NA	K	611A CO3	HCO3			NO3	LOID	
	OH#-	rn.	F:2C	53-		SCLU		LEHCS/			MA	•	003	NCOD	-	707	MUJ	LMIT	
CR	CR		PÇT	PCT			PCT '	CM	l			MEQ /	LITE	<b>!</b> -			)		
C00-5						******									~				*
005-10																			
C1C-5C		_																32D	70
020-36	34000	4.8	42.7					-14											
C36-59																		23D	4D
059-75																			
075-96			ne -					-4											
C96-113	A000	7.6	20.3					- 20											
113-165																			
IDENTIF	ICATIC	N DF	THE COL	CIC M	DR I ZON	BY LAR	OR ATOS	Y CRI	TERIA.	~~~~			. <del></del>						
									******										
DEPTH	HÇRI	ZON	(PYROPI 6C5A	OSPHA' 6G5A	0149,37 3146	CIT		() (PYI				C 1/2							
			EXT	EXT	EXT	EXT	EXT	1				AY							
			FÉ	AL	Č.	FΕ	AL	CLA'											
			PCT	PÇT	PÇT	PCT	PCT			FE4	AL TH	IC							
010-20	821		. 8	.4		1.4	.3	,15		•7		07							
020-36	622		-4	-4		1.0	-4	.13		.:		32							

⁽A) ESTIMATED.
(B) MICRO-PENETRATION RESISTANCE. A ROD 0.6 CM DIA IS SLOWLY PUSHED INTO BULK DENSITY CLOD, EQUILIBRATED AT 0.1-BAR, A DISTANCE OF 0.6 CM USING A PCCKET PENETRCMETER. UNITS ARE FORCE (KG) AND NOT ESTIMATES OF UNCCNFINED COMPRESSIVE STRENGTM.
(C) CREANIC CARRON IS 8 KG/M SQ TO A DEPTH OF 1 M (6A).
(D) BY USDA-SCS. SQIL MECHANICS LAB, LINCOLN, NE.

Soil classification: Entric Glossoboralf; coarse-loamy, mixed.

Location: Forest County, Wisconsin; NWs, NWs, Sec. 13, T. 37 N., R. 13 E.; near Highway 55. Climate: Humid continental; mean annual temperature ranges from 40° to 45° F; mean annual precipitation Tanges from 28 to 34 inches; and frost-free season is 130 to 135 days. Vegetation and land use: Native vegetation was mixed northern hardwoods and conifers. Cutover areas are presently in aspen. About 30 percent of this soil is cleared and used for general farming. Some wooded areas are pastured. Parent material: Silt (probably locas) over acid sand and gravel glacial outwash. Physiography: Nearly level to sloping glacial outwash plains and stream benches. Topography: Site is on a l percent plane slope in a second growth stand of hardwood and conifer trees. Drainage: Moderate and well drained. Ground water: Deep. Erosion: Slight. Permeability: Moderate. Described by: Steve Payne and Robert Fox. Robert H. Jordan and Robert L. Juve, September 22, 1972 Sampled by: (Colors are for moist soils unless otherwise stated) Al 721860 0 to 5 cm (0 to 2 inches). Dark reddish brown (5YR 2/2) silt loam; weak fine granular structure; friable; many roots; about 5 percent medium gravel; strongly acid; abrupt boundary. A2 72L861 5 to 10 cm (2 to 4 inches). Brown (7.5YR 5/2) wilt losm; weak fine subangular blocky structure; vary friable; roots common; about 5 percent medium gravel; strongly acid; abrupt boundary. B21hir 721862 10 to 20 cm (4 to 8 inches). Reddish brown (5YR 4/3) silt losm; weak fine subangular blocky structure; very friable; many roots; few fine pores; strongly acid; clear boundary. B221r 72L863 20 to 36 cm (8 to 14 inches). Brown (7.5YR 4/4) silt losm: weak fine subspender blocky structure: very

A'2 72L864 36 to 59 cm (14 to 23 inches). Brown (7.5YR 5/4) silt loam; weak medium platy structure parting to weak fine subsngular blocky structure; friable; vesicular; few roots; strongly acid; abrupt boundary.

A6B' 72L865 59 to 75 cm (23 to 30 inches). Brown (7.5YR 5/4 and 4/4) silt loam; weak fine subangular blocky structure; friable; few tongues of brown (7.5YR 4/4) silt loam B't extend into this horizon; strongly acid; clear boundary.

IIB 21t 72L866 75 to 96 cm (30 to 38 inches). Brown (7.5YR 4/4) loam; moderate medium subangular blocky structure; firm; about 5 percent fine gravel; common thick patchy clay films; slightly vesicular; strongly acid; clear boundary.

IIB'22t 72L867 96 to 113 cm (38 to 45 inches). Brown (7.5YR 4/2) heavy sandy losm; weak medium subangular blocky structure; firm; thick patchy clay films; about 5 percent of medium gravel and 15 percent of fine gravel; a few fine pores; strongly acid; clear boundary.

SOIL NC - - - - - S74WI-75-1 COUNTY ~ - - MARINETTE

GENERAL METHODS- - -1A,1818,2A1,28

SAMPLE NOS. 74L857-74L863

					.,		,	04111				.405							
DEPTH	HCRI	ZON	SAND 2-	SILT .05-	CLAY LT	FINE CLAY LT	vcos	CORS	LE SIZE SAND MEDS .5-	FNES	VFNS -10~	COSI	-SILT- FNSI -02	3A1A, VFS1 .005	SAND - 2-	INTR II -2-	FINE CLAY TO	NON~ CO3~ CLAY	8D1 15- 8AR
CCO-C18 018-036 C36-056 C56-076 C76-092 C92-C57 097-150	CA2 CA3 OA4 CA5 2C1		56.9 90.1	25.0 8.0	18.1 1.9		.1	1.7 3.5	11.3 21.4	34.3 54.5	9.5 10.5	8.8 5.9	16.2 2.1		47.4 79.6				1.41
СЕРТН	(PARTI VOL. GT 2 PCT	CLE SI ( GT 75 PCT	75-20	LYSIS, - WEI 20-5	MM, (GHT - 5-2 .T 75	38, 38) LT .074	20-2 PCT LT20	1( BU 1/3- BAR G/CC	LK DENS 4A1H OVEN DRY G/CC	SITY 1 401 COLE	481C 1/10 8AR PCT	-WATI 4B1C 1/3- BAR PCT	8 CO 482A 15- 8AR PCT	NTENT- 4C1 WRD CM/ CM		CARBO 6E1B LT 2 PCT	DNATE BAla LT .002 PCT	(P) 8C1A 1/1 H2O	H) 8C1E 1/2 CACL
000-018 018-036 036-056 056-076 076-092 092-097	TR O C O C Q	0 0 0	0000	0 0 0 0 0 C	TR C O O TR		TR C O C O TR	.27 .28 .25 .22	.57 .50 .43	·	337 302 362 415	296 247 317 369	90.5 92.2 137 105 84.3 25.5 3.3	.66 .59 .56				6.6 6.2 6.0 5.5	
CEPTH (	GRGN CARB PCT	681A NITG PCT	C/N	6C2B EXT FE PCT	TCTL PCT	6N2 E CA	602D	6P2B NA	6Q28 K	SUM EXTB / 100	6H1A BACL TEA G	EXT KCL 461E	5A 3A EXTB ACTY	5A 6A NHAC	8D1 NHAC TO CLAY	8D3 CA TO MG	SAT NHAC PCT	5C3 - EXTB ACTY PCT	SC1 NHAC PCT
000-018 C18-036 G36-056 G56-076 G76-092 C92-C97 G97-150	47.1 49.8 49.8 46.7 28.6 5.69 1.10	1.86 1.96 1.71 1.96 2.31 .336	25 25 29 24 12 17 33			184 135 151 126 84.7 28.2 7.5	46.3 39.0 45.2 39.8 27.4 10.3 4.7	.5 .3 .2 .2 .1 TR	.5 .1 .1 .2 .2 TR	231 174 197 166 113 38.8 12.2	39.5 48.4 53.6 58.8 46.4 13.4		270 223 250 225 159 52.2 13.0	189 162 180 147 102 30.8 3.8		4.0 3.5 3.3 3.2 3.1 2.7	97 83 84 86 83 92 197	85 78 79 74 71 74 94	122 108 109 113 110 126 321
CEPTH	(SATUR 8E1 REST OHM- CF	ATED F 8C18 PH	PCT	NA 5D2 ESP PCT	NA 5E SAR	PPM	GYP 6F1A PCT	8A1A EC IMHOS/ CM	( <del>-</del>	6018 MG	SATURA 6P18 NA	TION E 6Q18 K	LITE	· ·			6M1 A NO3	ATTERI 4F1 LQID LMIT PCT	SERG 4F2 PLST INDX
000-018 018-036 036-056 056-076 076-092 092-097	1700 1400 1000 650 610 620 960	6.9 5.7 5.5 5.2 5.3 4.7 6.2	477.0 552.0 632.0 555.0 358.0 150.0 28.9			3500 4400 9100 15000 11000 5000 1500		.95 1.05 1.65 2.74 3.09 3.29	6.9 7.3 13.1 25.1 28.5 27.5 25.1	4.2 4.9 9.2 17.0 19.0 24.1 56.8	.4 .2 .2 .2 .2 .2 .2	.1 TR .1 .1 .1	0 0 0	5.2 .6 .6 1.5 .6 .6	.0 .0 .3 .5	3.8 12.0 23.5 44.4 49.1 53.1 76.3	1.7 1.3 .0 .0		
CEPTH	( 8F Minl CCNT PCT	(STAT	E CF ( 8G R VOL) RUE	ECOMPO E PYROP SCLUE (PUNS	S IT IO H HOSPH IL ITY CCLO	HISTOS N) PH 8C1E T GIM CACL	(BUI 4A3/ FILI STA	K DEN 4 441 7 1/3 7 REW 6/C	) COLE I 4D1 B RE- T WET C	SUBS RES- IDUE PCT	( 484 FILO STAT PCT	WATER 4810 1/38 REWI	CONTER 482 15- 8AF	4C1 WRI CM					
00C-018 018-036 036-056 056-076 076-092 092-097	25 22 18 19				3/2 3/2 4/4 5/2	6.6 6.1 5.0 5.4 5.6		5 L	· · · · · ·		309 365 451								

⁽A) INCLUDES LIVE RCCTS (10-15 PCT).
(B) TREATED AS HALF SURFACE AND HALF SUBSURFACE.

Soil classification: Terric Borosaprist: sandy or sandy-skeletal, mixed, euic.

Series: Tawas.

Soil No.: S74WI-75-1.

Location: Marinette County, Wisconsin; SWk, SEk, Sec. 9, T. 30 N., R. 20 E.; 200 feet north of county road and 60 feet east of fence line. About 45.10 north latitude and about 88.0 west

Humid continental. Mean annual temperature at Marinette is 45.8° F; mean July temperature is 71.9° F; mean January temperature is 20.4° F; mean annual pracipitation is 28.19 inches, with nearly two-thirds of this during the growing season; total annual snowfall is 40.3 inches; the frostfree season is 143 days but less on the bog soil areas.

Parent material: Organic soil material derived primarily from woody remains with some herbaceous materials

over fine and medium sands of outwash or lacustrine derivation.

Physiography: Shallow depression in a large lake plain. Area is nearly level to gently sloping and local relief is less than 6 feet. Elevation is about 900 feet.

Vegetation: Overstory of white cedar, black ash, American elm, soft maple with understory of tag alder, willow, spires, and dogwood in virgin site to east. Area sampled has been in pasture for 30 years and has a cover of sedges, redtop, bluegrass, and native forba.

Size of area: Several hundred acres. Tawas occurs along the edge of the bog in a narrow belt several hundred feet wide bordering on the mineral soils.

Distance to adjacent mineral soils: 100 feet to the west.

Depth to water table; Surface was esturated to 25 cm. Water table was at 75 cm.

Microrelief: Low hummocks of 6 inches to 1 foot common over the area. Some of this was caused by cattle grazing.

Subsidence: Slight; some surface drainage had been achieved by a road ditch on the south side. Soil temperature: Measured soil temperature of 14.7° C at 50 cm and 12.5° C at 70 cm. Described and sampled by: G.W. Hudelson, A.J. Klingelhoets, G.B. Lee, W.E. McKinzie, and H. Lorenz on August 5, 1974. Samples were obtained from a pit dug with shovels.



\$01L NO - - - - - 568W1-8-3

COUNTY - - - CALUMET

GENERAL METHODS- - - 1A, 1818, 2A1, 2B

SAMPLE NOS. 68L1108-68L1117

DEPTH	HORI	ZON	(					PARTIC	LE SIZI	E ANAL'	SIS, I	LT 2MM	3AL.	3ALA,	BALB .				I TAF
			CANO	C f 1 T	CLAV	FINE	\v	CORE	SAND -	EMEC	VENE	/( rosi	-SILT-	~)	FAML	INTR	FIVE	NON-	801
			3 AND	.05-	LEAT	LAT	7-	LUKS 1-	- 5-	.25-	-10-	-05	- 07	.005-	- SAND	-2-	TD	CLAY	BAS
			.05	.002	.002	.0002	ī	. 5	-25	.10	.05	.02	-002	-002	21	.02	CLAY		to
CM			t ·	- <b></b> -					PC	T LT 21	4M						PCT	PCT	
01-000	Al			73.8	11.7	5.1	.5	1.5	2.3	4.5	5.7	36.6	37.2		8.8	44.7	44	12	.8
91-010	421			76-1	9.9		-6	1.4	2.2	4.2	5-6	38. 6	37.5		9.4	46.5		10	•
018-25	AZZ			73.5	10.4		••	1.7	2.6	9.2	6.2	37.5	36.0		9.9	40.5		10	
025-36 036-46	81 821		26.5	59+l	22 7	7.1 9.2	2.2	4.7	4.0	13.1	7-5	10.7	24.1		24 0	22 4	41	18 23	:
03048 046-61	28227		34.1	36.5	29.4	9.3	2.4	5.1	6.2	12.9	7.5	12.9	23.6		26.6	27.4	31	29	
061-86	283		46.2	36.8	17.0	4.5	2.8	4.5	5.3	19.0	14.6	18.4	18.4		31.6	45.1		17	
511-980			49.0	39.9	11.1		5.4	5.7	5.7	18.3	13.9	20.1	19.8		35.1	45.3		11	
112-163			46.4	43.4	10.2	4.5	5.0	5.8	5.5	16.6	13.5	20.6	22.8		32.9	44.4	44	7	• 3
000-20	AP	(A)																	
DEPTH			75 AN						* DEN								DNATE		
9ET 111	VOL.	(		WE	GHT -	LY .074		) 4A1D	4AlH	4D1	4B1C	4810		4C1		6E1B	BALA	BCLA	8¢1
	GT	GŦ	75-20	20-5	5-2	LT	20-2	1/3-	OVEN	COLE	1/10	1/3-	15-	WRD		LT	ŁT	1/1	1/2
	2	75				.074	PCT	BAR	DRY		BAR	BAR	BAR	CM/		2	-032	HZO	CAC
CH	PC T	PCT	(+ - ·	- PCT L	1 75	}	LT20	G/CC	G/CC		PCT	PCT	PCT	C M		PCT	PCT		
						90							9.4 5.7 4.9 8.0 10.0 12.1 6.1 4.3 3.8			TR		7.0	6.
	TR			YR	TR	90		1.27	1.31	.011		25-0	5.7	.25		0		6.8	. 6.
	TR		0	0	TR 1	88		1.41	1.43	.005		19.9	4.9	- 22		0		0.2	. 4
025-36 0 <b>36~46</b>	7			:	ŗ	80		1.62	1.70	-010		10.2	10.0	•10		0		5.4	
046-61	15	18	, v	TR	Te	66 65		1.45	1.64	-035		23.5	12-1	-14		ŏ		6-9	6.
061-86	20	15	ś	10	TR	50		1.608					6.1	•••		40	FR	7.9	7.
086-112		5	15	10	5	40		1.80	1.86	.008	16.8		4.3	-17		53	TR	8.0	7.
112-163	30		15		,	40		1.93	1.98	.006	14.7	_	3.6	+15		59	3	8.2	7.
												20.2	4.6						
000-20	TR	0	0	TR	TŘ	TR		1.45	1.71	.014		2012	7,0	.23					
000-20 DEPTH ((				to on	0UDS			4			ACTV		742)	EXCH)	PATIO	DATIO	C A	1845	E SAT
				to on	0UDS			4			ACTV		742)	EXCH)	PATIO	DATIO	C A	1845	E SAT SCI
DEPTH (	ORGANI 6ALA ORGN	C MATT 681A NITG	ER ) C/N	IRON 6C2A EXT	PHOS 651A TOTL	(EX 6NZE CA	TRACT 6020 MG	ABLE BA	ASES 56 602A K	SUM EXTE	ACTY 6HLA BACL TEA	AL 6G 1D KCL Ext	CAT SABA EXTB ACTY	EXCH) 5A6A NHAC	RATIO BDI NHAC TO	RATIO 803 CA TO	CA 5F SAT NHAC	1 BAS 503 EXTB ACTY	SAT SCI NHA
DEPTH (	ORGANI 6AlA ORGN CARB PCT	C MATT 681A NITG	ER } C/N	IRON 6C2A EXT FE PCT	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) 5A6A NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT	1 BAS 503 EXTB ACTY PCT	E SAT SC1 NHA PCT
DEPTH ((	ORGANI 6ALA ORGN CARB PCT	C MATI 681A NITG	ER } C/N	ERON 6C2A EXT FE PCT	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) 5A6A NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT	EBASE 503 EXTB ACTY PCT	E SAT SC1 NHA PCT
DEPTH ((	ORGANI 6ALA ORGN CARB PCT	C MATI 681A NITG	ER ) C/N	IRON 6C2A EXT FE PCT	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) 5A6A NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99	LBASE 5C3 EXTB ACTY PCT 83 70	E SAT SC1 NHA PCT
CM 000-10 010-18	ORGANI 6ALA ORGN CARB PCT 3.89C L.68	C MATI 681A NITG	ER ) C/N	IRON 6C2A EXT FE PCT	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) 5A6A NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 59	LBASS 5C3 EXTB ACTY PCT 83 70 56	E SAT 5C1 NHA PCT 12
CM 000-10 010-18 018-25 025-36	ORGANI 6ALA ORGN CARB PCT 3.89C L.68 0.75	C MATT 681A NITG PCT -269 -120 -053	ER ) C/N	IRON 6C2A EXT FE PCT	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) SAGA NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 59	18AS 5C3 EXTB ACTY PCT 83 70 56	E SAT SC1 NHA PCT 12 10 8
CM 000-10 010-18 018-25 025-36 036-46	ORGANI 6AlA ORGN CARB PCT 3-89C 1-68 0-75 0-46 0-38	C MATT 681A NITG PCT -269 -120 -053	14 14 14 14 12	ERON 6C2A EXT FE PCT 0.9 0.9 1.0	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) SAGA NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 69 49	83 70 83 83 83 70 56	E SAT 5C1 NHA PCT 12 10 8
CM CM 000-10 010-18 018-25 025-36 036-46 036-46	ORGANI 6ALA ORGAN CARB PCT 3-89C 1-68 0-75 0-46 0-38	C MATT 681A NITG PCT -269 -120 -053	14 14 14 14 12	ERON 6C2A EXT FE PCT 0.9 0.9 1.0	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) SAGA NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 69 49	83 70 83 83 83 70 56	E SAT 501 NHA PCT 12 10 8 7
CM 000-10 010-18 018-25 025-36 036-46 046-81	3.89C 1.68 0.75 0.468 0.75 0.468	C MATT 681A NITG PCT -269 -120 -053	14 14 14 14 12	ERON 6C2A EXT FE PCT 0.9 0.9 1.0	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) SAGA NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 69 49	83 70 83 83 83 70 56	E SAT 5C1 NHA PCT 12 10 8
CM CM 000-10 010-18 018-25 025-36 036-46 046-61 046-61 086-112	ORGANI 6A1A ORGAN CARB PCT 3-89C 1-65 0-75 0-46 0-38 0-38 0-19	C MATT 681A NITG PCT -269 -120 -053	14 14 14 14 12	ERON 6C2A EXT FE PCT 0.9 0.9 1.0	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) SAGA NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 69 49	83 70 83 83 83 70 56	E SAT 501 NHA PCT 12 10 8 7
CM CM 010-10 010-18 018-25 025-36 036-46 046-61 061-86 046-61 061-86	ORGANI 6A1A ORGAN CARB PCT 3-89C 1-65 0-75 0-46 0-38 0-38 0-39 0-12	C MATT 681A NITG PCT -269 -120 -053	14 14 14 14 12	IRON 6C2A EXT FE PCT	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG	ABLE BA	ASES 58 602A K	SUM EXTB	ACTY 6HIA BACL TEA G-	AL 6G1D KCL EXT	CAT SABA EXTB ACTY	EXCH) SAGA NHAC	RATIO BD1 NHAC TO CLAY	RATIO 803 CA TO MG	CA 5F SAT NHAC PCT 99 69 49	83 70 83 83 83 70 56	E SAT 5C1 NHA PCT 12 10 8 7
CM CM COO-10 CO-18 CO-18 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36 CO-36	ORGANI 6ALA ORGN CARB PCT 3-89C 1-68 0-78 0-46 0-38 0-38 0-19 0-12 1-58	C MATI 681A NITG PCT -269 -120 -053 -031 -035	(FR ) (C/N) 14 14 14 12 12 12 11	ERON 6C2A EXT FE PCT 0.9 0.9 1.0 1.3 1.5 1.8 0.8 0.4	PHOS 65 1A TOTL PCT	(EX 6N2E CA	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.30 2.30 1.90	TR 0-1 0-1 0-1 0-1 0-1 0-1	HEC HEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1	26+3 11-9 7-11 9-2 12-7 18-8 8-6 6-0 5-1	5.4 5.0 5.6 7.6 7.6 7.6	AL 6G1D KCL EXT	1CAT 5A3A EXTB ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATIO BD1 NHAC TD CLAY 1.80 1.20 0.64 0.66 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA TO MG 4.0 2.2 1.7 1.6 1.5	CA 5F SAT NHAC PCT 99 59 49 49 45 50	83 70 83 83 83 70 56	E SAT 5C1 NHA PCT 12 10 8 7
CM CM 000-10 010-18 018-25 025-36 036-46	ORGANI GA1A ORGN CARB PCT 3-89C 1-68 0-75 0-46 0-38 0-38 0-38 0-12 1-58	C MATI 681A NITG PCT -269 -120 -051 -031	(FR ) G/N 14 14 14 12 12	ERON 6C2A EXT FE PCT 0.9 0.9 1.0 1.3 1.5 1.8 0.8 0.4 0.5	PHOS 6S1A TOTL PCT	( EX 6NZE CA ( 20.8 8.0 4.3 5.5 7.4 10.7 5.0D 3.5D 3.0D	TRACT 6020 MG	ABLE 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	ASES 58 602A K MEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2	SUM EXTB 26.3 11.9 7.1 9.2 12.7 18.8 8.6 6.0 5.1	9 ACTY 6HIA BACL TEA 3 G- 5.4 5.0 7.6 7.6 7.0	AL 6G10 KCL EXT	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RAT 10 8D1 NHAC TO CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA TO MG 4.0 2.2 1.7 1.6 1.5	CA 5F SAT NHAC PCT 99 59 45 50 57	(BAS) 5C3 EXTB ACTY PCT 83 70 56 55 64 81	E SAT 5C1 NHA PCT 12 10 8 7 8 9 9
CM 000-10 010-18 010-25 036-46 036-46 086-112 112-163 000-20	ORGANI 6A1A ORGN PCT 3.89C 1.68 0.75 0.46 0.38 0.30 0.10 0.12 1.58	C MATT 681 A NITG PCT -269 -120 -031 -031 -035	C/N  14 14 14 12 12 12 11	IRON 6C2A EXT FE PCT 0.9 1.0 1.3 1.5 1.8 0.8 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA ( 20.8 8.0 4.3 5.5 7.4 10.7 5.0D 3.5D 3.5D	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D	ABLE 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	ASES 58 602A K MEC 0.3 0.2 0.1 0.2 0.3 0.4 0.2 0.1	SUM EXT8 2 / 100 26-3 11.9 7-1 12-7 18-8 8-6 6-0 9-1	5.4 5.0 7.6 7.6 7.6 7.6	AL 6G10 KCL EXT	(CAT 5A3A EXTB ACTY 	EXCH) 5A6A NMAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATIO BD1 NHAC TO CLAY 1.80 1.22 2.84 0.67 0.66 0.66 0.45 0.39	RAT10 803 CA T0 MG 4.0 2.2 1.7 1.6 1.5 1.4	CA 5F SAT NHAC PCT 99 59 57	(BAS) 5C3 EXTB ACTY PCT 83 70 56 55 64 81	E SAT 5C1 NHA PCT 120 10 8 7 8 9 9 4 5 5 6 4 5 2
CM 000-10 010-18 010-25 036-46 036-46 086-112 112-163 000-20	ORGANI 6A1A ORGN PCT 3-89C 1-68 0-75 0-468 0-38 0-39 0-12 1-58 (SATU 8E1	C MATT 681 A NITG PCT -269 -120 -031 -031 -035	G/N  14 14 14 14 12 12	IRON 6C2A EXT FE PCT 0.9 1.0 1.3 1.5 1.8 0.8 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA ( 20.8 8.0 4.3 5.5 7.4 10.7 5.0D 3.5D 3.0D	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D	ABLE 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	ASES 58 602A K MEC 0.3 0.2 0.1 0.2 0.3 0.4 0.2 0.1	SUM EXT8 2 / 100 26-3 11.9 7-1 12-7 18-8 8-6 6-0 9-1	5.4 5.0 7.6 7.6 7.6 7.6	AL 6G10 KCL EXT	(CAT 5A3A EXTB ACTY 	EXCH) 5A6A NMAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATIO BD1 NHAC TO CLAY 1.80 1.22 2.84 0.67 0.66 0.66 0.45 0.39	RAT10 803 CA T0 MG 4.0 2.2 1.7 1.6 1.5 1.4	CA 5F SAT NHAC PCT 99 59 57	(BAS) 5C3 EXTB ACTY PCT 83 70 56 55 64 81	E SAT 5C1 NHA PCT 120 10 8 7 8 9 9 4 5 5 6 4 5 2
CM 000-10 010-18 010-25 036-46 036-46 086-112 112-163 000-20	ORGANI 6A1A ORGN PCT 3.89C 1.68 0.75 0.46 0.38 0.30 0.10 0.12 1.58	C MATT 681 A NITG PCT -269 -120 -031 -031 -035	C/N  14 14 14 12 12 12 11	IRON 6C2A EXT FE PCT 0.9 1.0 1.3 1.5 1.8 0.8 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 9. 6P2A NA  TR 0-1 0-1 0-1 0-1 0-1 1 8A1A HMHOS/	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 5C3 EXTB ACTY PCT  B3 70 56 55 64 81  ATTER 4F1 LQ10 L41T	E SAT 5C1 NHA PCT 120 18 7 8 9
CM 000-10 010-18 010-25 025-36 036-46 046-61 061-86 080-12 1012-163 000-20	ORGANI 6A1A ORGAG ORGAG PCT 3-89C 1-68 0-75 0-46 0-38 0-39 0-12 1-58 (SATUR REST OMM	C MATI 681A NITG PCT -269 -120 -051 -031 -035 ATED F 8C1B	14 14 12 11 11 14 14 14 14 14 14 14 14 14 14 14	IRON 6C2A EXT FE PCT 0.9 1.0 1.3 1.5 1.8 0.4 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 9. 6P2A NA  TR 0-1 0-1 0-1 0-1 0-1 1 8A1A HMHOS/	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTB ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 5C3 EXTB ACTY PCT  B3 70 56 55 64 81  ATTER 4F1 LQ10 L41T	E SAT 5C1 NHA PCT 1210 8 7 8 9 9 8 4 F 2
CM 000-10 010-18 010-25 025-25 036-46 086-112 112-163 000-20	ORGANI 6A1A ORGAG ORGAG PCT 3-89C 1-68 0-75 0-46 0-38 0-39 0-12 1-58 (SATUR REST OMM	C MATI 681A NITG PCT -269 -120 -051 -031 -035 ATED F 8C1B	14 14 12 11 11 14 14 14 14 14 14 14 14 14 14 14	IRON 6C2A EXT FE PCT 0.9 1.0 1.3 1.5 1.8 0.4 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 9. 6P2A NA  TR 0-1 0-1 0-1 0-1 0-1 1 8A1A HMHOS/	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 5C3 EXTB ACTY PCT  B3 70 56 55 64 81  ATTER 4F1 LQ10 L41T	E SAT 5C1 NHA PCT 12 10 8 7 8 9 9 8 4 5 2
CM 000-10 010-18 010-18 025-36 036-61 061-86 081-12 12-163 000-20 000-10 010-18	ORGANI 6A1A ORGAG ORGAG PCT 3-89C 1-68 0-75 0-46 0-38 0-39 0-12 1-58 (SATUR REST OMM	C MATI 681A NITG PCT -269 -120 -051 -031 -035 ATED F 8C1B	14 14 12 11 11 14 14 14 14 14 14 14 14 14 14 14	IRON 6C2A EXT FE PCT 0.9 1.0 1.3 1.5 1.8 0.4 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 8. 6 P2A NA  TR 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 523 EXTB ACTY PCT  83 70 56 55 64 81  ATTERI 4F1 LQIO	E SAT 5C1 NHA PC1 12 12 12 12 12 12 12 12 12 12 12 12 12
CM  CM  000-10  010-18  025-36  046-61  041-86  041-86  000-20  LEPIH  CH  000-10  010-18  010-18  010-18	ORGANI 6A1A ORGN6 PCT 3-89C 1-68 0-75 0-38 0-19 0-19 1-58 (SATUR 8E1 CM	C MATT 681A NITG PCT -269 -120 -053 -031 -035 ATED F 8C1B	14 14 12 11 11 14 14 14 14 14 14 14 14 14 14 14	IRON 6C2A EXT FE PCT 0.9 1.3 1.5 1.8 0.8 0.4 0.5	PHOS 651A TOTL PCT	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 9. 6P2A NA  TR 0-1 0-1 0-1 0-1 0-1 1 8A1A HMHOS/	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 523 EXTB ACTY PCT B3 700 56 55 64 81 ATTER! 4F1 LQID LMIT PCT 28E	E SA1 501 NHA PC1 12 12 12 12 12 12 12 12 12 12 12 12 12
CM  000-10 010-18 010-18 025-36 036-46 066-18 012-163 000-20  CM  CM  CM  000-10 010-18 010-25 025-36 036-46	ORGANI 6A1A ORGN6 PCT 3-89C 1-68 0-75 0-38 0-19 0-19 1-58 (SATUR 8E1 CM	C MATT 681A NITG PCT -269 -120 -053 -031 -035 ATED F 8C1B	ER ) G/N 14 14 14 12 12 11 PASTE) 8A H20 PCT	IRON 6C2A EXT FE PCT 0.9 1.3 1.5 1.8 0.8 0.4 0.5	PHDS 6S1A TOTL PCT NA SE SAR	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 8. 6 P2A NA  TR 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 523 EXTB ACTY PCT  83 70 56 55 64 81  ATTERI 4F1 LQIO	E SAT 5C1 NHA PC1 12 12 12 12 12 12 12 12 12 12 12 12 12
CM 000-10 010-18 010-18 010-8 010-8 010-8 010-8 010-8 010-8 010-8 000-20 000-10 010-8 010-8 010-8 010-8 010-8 000-10 000-10 000-10 000-10 000-10 000-10 000-10	ORGANI 6A1A ORGN6 PCT 3-89C 1-68 0-75 0-38 0-19 0-19 1-58 (SATUR 8E1 CM	C MATT 681A NITG PCT -269 -120 -053 -031 -035 ATED F 8C1B	ER ) G/N 14 14 14 12 12 11 PASTE) 8A H20 PCT	IRON 6C2A EXT FE PCT 0.9 1.3 1.5 1.8 0.8 0.4 0.5	PHDS 6S1A TOTL PCT NA SE SAR	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 8. 6 P2A NA  TR 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 523 EXTB ACTY PCT B3 700 56 55 64 81 ATTER! 4F1 LQID LMIT PCT 28E	E SAT 5C1 NHA PC1 12 12 12 12 12 12 12 12 12 12 12 12 12
CM  000-10 010-18 010-18 025-36 036-61 061-86 012-163 000-20  CM  CM  000-10 010-18 018-25 025-36 036-61 061-86	ORGANI 6A1A ORGAG PCT 3-89C 1-68 0-75 0-46 0-38 0-30 0-12 1-58 (SATUR REST OM	C MATI 681A NITG PCT -269 -120 -031 -031 -035 ATED F 8C1B PM	14 14 12 12 12 11 11 11 11 11 11 11 11 11 11	IRON 6C2A EXT FE PCT 0.9 1.3 1.5 1.8 0.8 0.4 0.5	PHDS 6S1A TOTL PCT NA SE SAR	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 8, 6P2A NA TR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 523 EXTB ACTY PCT B3 700 56 55 64 81 ATTER! 4F1 LQID LMIT PCT 28E	E SAT 5C1 NHA PCT 12 10 8 7 8 9 9 8 4 5 2
CH  OUO-10  O10-18  O10-29  O25-36  O36-46  O36-112  127-13  O00-20  UEPTH  CH  OUD-10  O10-18  O18-25  O25-36  O36-46  O46-61  O61-86	ORGANI 6A1A ORGAG PCT 3-89C 1-68 0-468 0-38 0-158 0-319 0-158 (SATUR 8EST OHM- CM	C MATI 681A NITG PCT -269 -120 -031 -031 -035 ATED F 8C1B PM	14 14 12 12 12 11 11 11 11 11 11 11 11 11 11	IRON 6C2A EXT FE PCT 0.9 1.3 1.5 1.8 0.8 0.4 0.5	PHDS 6S1A TOTL PCT NA SE SAR	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 8. 6 P2A NA  TR 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 5C3 EXTB ACTY PGT 83 70 56 64 81 ATTER 4F1 LQID LQID LQID LQID 28E 28E	E SAT 5C1 NHA PCT 120 10 8 7 8 9 9 4 5 5 6 4 5 2
CM  000-10 010-18 010-18 025-36 036-61 061-86 012-163 000-20  CM  CM  000-10 010-18 018-25 025-36 036-61 061-86	ORGANI 6A1A ORGAG PCT 3-89C 1-68 0-468 0-38 0-158 0-319 0-158 (SATUR 8EST OHM- CM	C MATI 681A NITG PCT -269 -120 -031 -031 -035 ATED F 8C1B PM	14 14 12 12 12 11 11 11 11 11 11 11 11 11 11	IRON 6C2A EXT FE PCT 0.9 1.3 1.5 1.8 0.8 0.4 0.5	PHDS 6S1A TOTL PCT NA SE SAR	(EX 6NZE CA (	TRACT 6020 MG 5.2 3.6 2.6 3.4 4.9 7.6 3.3D 2.3D 1.9D GYP 6FIA	ABLE 8, 6P2A NA TR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ASES 58 602A KMEC 0-3 0-2 0-1 0-2 0-3 0-4 0-2 0-1 0-1	SUM EXTB 2 / 100 26+3 11-9 7-1 18-8 8-6 6-0 5-1	ACTY 6HIA BACL TEA 5-4 5-0 7-0 7-0 4-5	AL 6G1D KCL EXT TION 601A K	(CAT 5A3A EXTR ACTY 	EXCH) 5A6A NHAC) 21.1 11.6 8.7 12.3 14.9 18.9 5.0 4.0	RATID BD1 NHAC TD CLAY 1.80 1.20 0.67 0.66 0.64 0.52 0.45 0.39	RAT10 803 CA 70 MG 4.0 2.2 1.7 1.5 1.4	CA 5F SAT NHAC PCT 99 59 59 57 50 57	(BAS) 523 EXTB ACTY PCT B3 700 56 55 64 81 ATTER! 4F1 LQID LMIT PCT 28E	E SAT 5C1 NHA PC1 12 12 12 12 12 12 12 12 12 12 12 12 12

CLAY MINERALOGY (7A2C).

036-46 PIL KKI MYL.

046-61 MIL KKI MYL.

COMMENTS - BY INFERENCE, A CONSIDERABLE AMORPHOUS COMPONENT IS PRESENT. CLAY MINERALOGY IS MIXED.

RELATIVE AMOUNTS - (X-RAY) 5 = DOMINANT 4 = ABUNDANT 3 = MODERATE 2 = SMALL 1 = TRACE.

MINERAL CODE - MI = MICA KK = KADLINITE MY = MONTMORILLONITE-VERMICULITE.

(A) COLLECTED 90 M SOUTH OF 8-3 FROM A FIELD OF ALFALFA-BROME.

(B) STIMATED.

(C) ORGANIC CARBON IS 10 KG PER SQ M TO A DEPTH OF 1 METER (METHOD 6A).

(D) METHODS 6NAC FOR CA AND 604C FOR MG.

(E) LL AND PI BY SDIL MECHANICS LAB, USDA-SCS, LINCOLN, NE.

Soil classification: Typic Hapludalfs; fine-loamy, mixed, mesic.

Soil: Theresa.

Soil No.: S68WI-8-3.

Location: Calumet County, Wisconsin; SE's, SE's, Sec. 1, T. 17 N., R. 20 E.; 150 feet north or road and 25 feet east of logging road in small woodlot.

Climate: Humid continetnal. Average annual air temperature ranges from 47° to 51° F; average annual precipitation is about 21 to 31 inches; frost-free season is 130 to 140 days.

Vegetation and land use: Most of this soil, except for extremely stony areas, is cultivated and used for growing general farm crops. Native vegetation was maple-basswood forest.

Parent material: Thin silt mantle (10 to 30 inches thick) over highly calcareous light loam to sandy loam glacial till.

Physiography: Gently undulating to hilly drumlins and glacial till plains.

Topography: On a large drumlin with an east aspect. Slope is 1 percent. Site was about halfway down the slope.

Drainage: Well drained.

Ground water: Deep.
Brosion: Slight.

Permeability: Moderate.

Described by: A. Klingelhoets, R. Fox, and E. Link, August 20, 1968.

(Colors are for moist conditions unless otherwise stated)

Al 68L1108 0 to 10 cm (0 to 4 inches). Very dark brown to very dark grayish brown (10YR 2/2 to 3/2) silt loam; weak medium subangular blocks parting to moderate fine crumb structure; friable; roots common; mildly alkaline; abrupt smooth boundary.

A21 68L1109 10 to 18 cm (4 to 7 inches). Dark brown (10YR 4/3) silt loam; weak coarse platy parting to weak fine subangular blocks; friable; (nondiagnostic Bir horizon is starting to develop); roots common; few large stones in this horizon; much earthworm activity; mildly alkaline; clear wavy boundary.

A22 68L1110 18 to 25 cm (7 to 10 inches). Brown (10YR 5/3) silt loam; moderate coarse platy structure; friable; roots common; few earthworm holes and casts; few large stones extending into this horizon; mildly alkaline; clear wavy boundary.

B1 68L1111 25 to 36 cm (10 to 14 inches). Dark brown (10YR 4/3) heavy silt loam; weak coarse plates parting to moderate fine and medium subangular blocks; firm when moist; few large stones; roots common; light gray (10YR 7/2) silt coatings on vertical faces of peds; slightly acid; gradual wavy boundary.

B2lt 68L1112 36 to 46 cm (14 to 18 inches). Dark yellowish brown (10YR 4/4) silty clay loam; moderate fine and medium subangular blocky structure; firm when moist; thin patchy clay films and light gray (10YR 7/2) silt coatings on faces of peds; roots common; few pebbles and stones; slightly acid; clear wavy boundary.

IIB22t 68L1113 46 to 61 cm (18 to 24 inches). Dark brown (7.5YR 4/4) heavy clay loam; moderate medium angular and subangular blocky structure; firm when moist; thick patchy clay films with dark brown (7.5YR 4/2) color; at the contact with the B3 there is a thin discontinuous beta B with some dark brown (7.5YR 3/2) organic stains; roots common; stones 3/4 to 3 inches in diameter constitute 3 percent of the volume and stones over 3 inches in diameter make up 10 percent of the volume; neutral; clear wavy boundary.

IIB3 68L1114 61 to 86 cm (24 to 34 inches). Dark brown (7.5YR 4/4) in upper part, grading to brown (7.5YR 5/4) in the lower part heavy loam; weak to moderate medium subangular blocky structure; firm when moist; many remnants of partially weathered dolomite pebbles; few thin patchy clay films; stones 3/4 to 3 inches in diameter make up 3 percent of the volume and stones over 3 inches in diameter make up 10 percent of the volume; roots common; moderately alkaline in places to calcareous around partially weathered dolomite pebbles; gradual irregular boundary.

IIC1 68.1115 86 to 112 cm (34 to 44 inches). Yellowish brown (10YR 5/4) losm; weak coarse platy structure parting to weak medium subangular blocks; friable; few tree roots; 10 percent of volume made up of stones 3/4 to 3 inches in diameter and 5 percent made up of stones over 3 inches in diameter; over 50 percent of the stones are dolomite; strong effervescence; gradual wavy boundary.

IIC2 68L1116 112 to 163 cm (44 to 64 inches). Yellowish brown (10YR 5/4) loam; weak medium subangular blocky structure; friable when moist; few tree roots in upper part; 5 percent of volume made up of stones over 3 inches in diameter and 10 percent made up of stones 3/4 to 3 inches in diameter; over 50 percent of the stones are dolomite; strong effervescence; rests abruptly on dolomite bedrock at 64 inches.

Remarks: Soil was moist when sampled. The glacial till is estimated to have over 30 percent calcium carbonate equivalent. Original vegetation is still present on this site.

Wooded site: Soil temperature at 10 inches -  $20.0^{\circ}$  C. 20 inches -  $18.5^{\circ}$  C.

40 inches - 16.0° C.

A plow layer sampled in a cultivated field, 100 feet south of the road directly across from the site in the woodlot had the following characteristics:

Ap 68L1117 0 to 8 inches. Dark grayish brown to light brownish gray (10YR 5/2 to 6/2) dry; silt loam; weak medium subangular blocks breaking to moderate very fine subangular blocky structure; friable when moist; mildly alkaline in reaction.

SERIES - - - - - - THERESA

SOIL SURVEY INVESTIGATIONS UNIT LINCOLN, NEBRASKA SOIL NO - - - - - S68WI-8-4 COUNTY - - - CALUMET GENERAL METHODS- - -14,1818,241,28 SAMPLE NOS. 68L1118-68L1128 ---- PARTICLE SIZE ANALYSIS, LT ZMM, 3A1, 3A1A, 3A1B -HOREZON - PRATIO --- SAND -FNES VFNS COSI FAML TEXT FINE ( - -INTR FINE MON-801 SAND SILT CLAY CLAY VCOS FNSI VFSI 11 CLAY CO3-15-.5-.25 - PCT .25-1-.05 CLAY BAR .05 *00S -0002 -005 -002 -05 -02 CLAY 1 -02 - 002 2-.1 TΩ CM LT 2MM CLAY PCT 000-13 19.3 67.6 13.1 1.5 2.7 32.8 11.6 .80 46.3 013-18 20.5 9.6 .6 2.8 7.3 8.1 8.2 36.1 35.5 33.8 12.4 48.2 A21 69.9 1.7 .51 AZZ 68.3 1.9 10 .42 3.5 4.5 7.4 18 023-30 Bl 18.3 8.4 1.6 030-43 20217 26.3 44.1 29.6 3.1 10.4 21.4 22.7 19.6 33.6 .37 38 13 2822T 28.4 3.2 4.8 13.8 21.7 .39 33.2 38.4 11.6 6.7 19.4 26.8 058-84 283T 54.2 56.4 32.7 13.1 2.6 8.8 4.1 5.5 6.8 23.3 18.7 17.5 15.2 35.5 51.1 . 38 42.5 086-104 2C1 34.5 42.1 .36 104-142 2C2 10.0 5.3 5.9 18.4 35.0 142-178 203 46.2 42.1 11.7 6.0 6.3 16.8 34.3 10 - 32 000-15 (A) DEPTH (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULL VOL. (- - - - - - WEIGHT + - - - - - - 3 4A10 BULK DENSITY )(- - - WATER (- -PH - -1 8C1A 8C1E CONTENT- - - - CARBONATE 481C 1/10 481C 482 1/3- 15-4C1 WRD BALA 6£18 OVEN COLE 75-20 20-5 20-2 GT .074 - - ) 901 RAR DRY RAR RAR BAR CM/ -002 H20 SACL (- - - PCT LT 75 LT20 G/CC CM PCT PCT G/CC PCT PCT CM PCT PCT PCT 1.20 .037 10.5 5.9 000-13 TR TR 1.08 -27 6.6 013-18 018-23 85 1.39 6.9 TR TR 1.34 .013 24.9 n 6.2 24.0 TR 0 TR TŔ 84 ŤR 1.46 -009 4.1 .30 6.0 1.61 17.3 75 70 030-43 TR TR TR TR TΩ 11.0 TR 0 6.7 7.1 6-0 043-58 1.43 1.70B 1.808 .041 25.3 -12 15 1.65 6.6 7.1 7.2 058-86 25 35 15 10 TR 40 14 29 0 7.9 086-104 20 5 3.3 50 15 1.90 1.96 2.01 .008 3.5 .15 8.3 15 142-178 25 15 45 -005 12.6 1.57 000-20 DEPTH LORGANIC MATTER ) IRON PHOS (- -EXTRACTABLE BASES 584A- -) A 651A 6N2E 6D2D 6P2A 6Q2A ACTY AL 6G1D (CAT EXCH) RATIO RATIO CA SF (BASE SAT) 5C3 5C1 5A6A 6AIA 681 A C/N 6C2A 6HLA SASA BD1 803 NHAC ORGN EXT CA AF SUM BACL KCL NHAC CA SAL EXTB NHAC NITG TOTL NHAC ACTY CARE £ F FKTR TEA FXT ACTY Ğ-PCT -MEQ / 100 CLAY PCT PCT CM PCT 19.8 7.2 0.1 0.3 27.4 32.8 23.9 1.80 000-13 4.30C 1.0 5.4 67 66 71 5.5 16.6 11.1 1.20 0.9 3.7 TR 0.2 11.1 1.9 65 100 58 TR 0.1 7.2 1.6 018-23 0.68 0.9 4.4 2.7 1.6 023-30 15.9 11.9 0.65 95 0.46 1.2

0.4

0.2

0.1

0.1

0.1

14.5

8 · 2

5.9

0.1

0.1

0.1 TR

TR

0.1

19.8

19.0

0.64

8.0

4.8

3.8

4.3

1.0

0.62

0.61

0.38

0.37

1.8

1.9

0.5

0.4

030-43 043-58

086-104 0.30 104-142 0.14

0-41

0.50 0.38

0.16

6.9D 9.7D

2.90 1.90

1.70

2.40

7.10

13.20

5.00

3.2D

3.30

⁽A) COLLECTED 80 M WEST OF 8-4 IN AN DAT FIELD.

⁽B) ESTIMATED.

⁽C) GREANIC CARBON IS 12 KG PER SQ M TO A DEPTH OF 1 METER (METHOD 6A).
(D) METHODS 6N4C FOR CA AND 604C FOR MG.

Soil classification: Typic Hapludalfs; fine-loamy, mixed, mesic .

Soil: Theresa

Soil No.: S68WI-8-4 .

Location: Calumet County, Wisconsin; SE%, SE%, Sec. 21, T. 18 N., R. 20 E.; 150 feet north and 100 feet west of southwest corner of woodlot.

Climate: Climate is humid continental. Mean annual temperature ranges from about 47° to 51° F; mean annual precipitation is about 30 inches; frost-free season is about 135 days.

Vegetation and land use: Most of this soil, except for very stony areas, is used for growing general farm crops.

Native vegetation was maple-basswood forest.

Parent material: Thin silt mantle (10 to 30 inches thick) over highly calcareous light losm to sandy losm glacial t111.

Physiography: Gently undulating to hilly drumlins and glacial till plains.

Topography: On gently sloping ground moraine with a southwest aspect. Slope is 1 percent.

Drainage: Well drained. Ground water: Deep. Erosion: Slight.

Permeability: Moderate.

Described by: R.B. Grossman, R.E. Fox - August 20, 1968.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE MRTSC SOIL SURVEY INVESTIGATIONS UNIT

SOIL NO																			
		10s	-1A,18	18,2A1	, 2B			SAMPL	.E NOS.	68L11	129-68L	1135							
DEPTH	HORI	ZON	\$AND 2- •05 {	SILT .05- .002	CLAY ET .002	FINE CLAY LT .0002	5- ACO2	CORS 1- +5	SAND - MEDS -5- -25 - PCT	FYES -25-	SIS, L	T 2MM, ( COSI -05	3A1. SILT- FNSI .02	VFSI .005-	FAML TEXT SAND 21	INTR II •2- •02	FINE CLAY TO CLAY PCT	NON- CO3- CLAY	RATIO 8DL 15- BAR TO CLAY
00-20	AP AEB 2B21 2B22 2B3 2C1	T T	30.2 33.6 33.1 39.8 51.7 50.9 50.9	61.6 50.4 38.1 39.6 37.2 40.2 41.4	8.2 16.0 28.8 20.6 11.1 8.9 7.7	7.7	1.1 1.3 1.5 3.0 2.6 3.3 3.9	2.6 3.3 3.7 5.2 5.3 5.2 5.3	5.5 6.4 6.4 7.5 8.7 7.4 7.2	11.7 13.7 13.7 15.2 20.9 20.2 19.9	9.3 8.9 7.8 8.9 14.2 14.8	34.7 25.5 16.1 18.4 19.8 21.7 21.3	26.9 24.9 22.0 21.2 17.4 18.5 20.1		20.9 24.7 25.3 30.9 37.5 36.1 36.3	50.1 41.5 31.2 35.4 46.0 48.3 47.3	27	8 16 29 21 11 9	.63 .36 .37 .36 .43
CM .	PARTI VOL. GT 2 PCT	CLE S ( GT 75 PGT	ANA 351 CS-27	LYSIS, - WEI 20-5 PCT L	MM, 3 GHT - 5-2 T 75 -	8, 381  LT .074	. 382  20-2 PCT LT20	) ( BUL ) 4A1D 1/3- BAR G/CC	K DENS 4A1H JVEN DRY G/CC	ITY ) 4D1 COLE	4B1C 1/10 BAR PCT	-WATE 481C 1/3- BAR PCT	R CO! 482 15- Bar PCT	HENT- 4C1 WRD CM/ CM	)	CARBO 6E1B LT 2 PCT	DNATE BALA LT -002 PCT	(PH 8C1A 1/1 H2O	CACE 1/2 8C16
00-20	1 10 10 25 20	O O TR TR	15	1 1 TR	1 1 5 TR	74 70 60 55	2 2 5 2	1.42 1.40A 1.54	1.45 1.60 1.78	.007		19.9 15.8	5.1 6.1 10.1	.21 .08 .10		0. 0 TR 2	0 0 0 0	7.0 7.0 7.2 7.6	6.3 6.6 6.6 7.1 7.3
			TEQ A				'hest	#1 <u> E</u> D 6	CEC FA	4A _ )	ACTY	A.I	46 A T	EALNI	DATIO	 0 1 E J O		1015	- FAF1
		1 1						>				-							
								>=											
		I)						>=											
		1																	
	ORGN	L L J				CA			K	SUM	BACL	KCL	EXTR	I NHAC	NHAC	CA	SAT	EXTR	AHAV
	ORGN	L L J							K	SUM	BACL	KCL	EXTB		NHAC TO	CA	SAT	EXTR	VAHAV
	ORGN	L L J							K	SUM	BACL	KCL	EXTB	I NHAC	NHAC	CA	SAT	EXTB	VHAC

000-20	1.698	.128	13	0.8	8.0	2.5	0.1	0.1	10.7	3.6	14.3	10.4	1.30	3.2	77	75	10
20-28	0.74	-055	13	1-1	7.3	2.6	0.1	0.1	10.1	3.6	13.7	10.0	0.63	2.8	73	74	10
28-46	0.68	.065	10	1.5	10.60	3.9C	0.1	0.3	14.9			16.6	0.58				
46-64	0.55	0.049	11	1.3	8.60	3.2C	0.1	0.2	12.1			12.2	0.59				
64-91	0.23			0.7	4.8C	1.90	0.1	0.1	6.9			5.9	0.53				
91-130	0.16			0.5	3.QC	1.5C	TR	0.1	4.6			3.9	0.44				
30-170	0.16			0.5	3.10	1.6C	0.1	0.1	4.9			3.8	0.49				

DEPTH (SATURATED PASTE) NA NA FE SALT GYP (----- SATURATION EXTRACT BAL-----) ATTERBERG Soil classification: Typic Hapludalf; fine-loamy, mixed, mesic.

Soil: Waymor taxadjunct* .

Soil No.: S68WI-36-1.

Location: Manitowoc County, Wisconsin; SWk, SBk, Sec. 13, T. 21 N., R. 22 E.; 300 feet north of county park road

and 400 feet west of woodlot.

Climate: The climate is humid continental. Mean annual temperature ranges from 45° to 47° F; mean annual precipi-

tation ranges from 26 to 32 inches, and the frost-free season is about 135 days.

Vegetation and land use: Native vegetation was mixed hardwoods, predominantly maple, basswood, beech, oak, yellow birch, and elm. About 80 percent of this soil is cultivated or in pasture. Corn, oats, and legume hay are the principal crops.

Parent material: Calcareous loam and sandy loam glacial till with a thin silt mantle.

Physiography: Gently sloping to moderately steep plane and convex slopes on glacial ground moraines.

Topography: Site is on a convex slope of 2 percent with a southeast aspect.

Drainage: Well drained. Ground water: Deep.

Erosion: Slight.

Permeability: Moderate

Described by: Robert Fox, Ernest Link, Howard Lorenz, August 21, 1968.

(Colors are for moist soil unless otherwise stated)

Ap 68L1129 0 to 20 cm (0 to 8 inches). Very dark grayish brown (10YR 3/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine subangular blocky structure; friable when moist; common roots; much earthworm activity (casts and holes); neutral; abrupt smooth boundary.

A&B 68L1130 20 to 28 cm (8 to 11 inches). Dark brown (10YR 4/3) silt losm; weak fine subangular blocky structure parting to weak fine granules; friable when moist; common roots; few pebbles and earthworm casts; neutral; abrupt wavy boundary.

IIB21t 68L1131 28 to 46 cm (11 to 18 inches). Reddish brown (5YR 4/4, crushed) clay loam; moderate fine angular blocky structure; firm when moist, hard when dry; thick continuous clay films with dark reddish brown (5YR 3/4) colors; 1 percent of volume composed of stones over 3 inches in diameter and 5 percent of stones 3/4 to 3 inches in diameter; common roots; mildly alkaline; gradual wavy boundary.

IIB22t 68L1132 46 to 64 cm (18 to 25 inches). Dark reddish brown (5YR 3/4, crushed) clay loam; moderate fine angular blocky structure; firm when moist; thick continuous clay films with dark reddish brown (5YR 3/3) colors; 1 percent of volume composed of stones over 3 inches in diameter and 10 percent of stones 3/4 to 3 inches in diameter; many of the stones are partly weathered dolomite; common roots; mildly alkaline; clear wavy boundary.

IIB3 68L1133 64 to 91 cm (25 to 36 inches). Brown (7.5YR 5/4) loam; weak fine subangular blocky structure; friable when moist; 10 percent of volume composed of stones over 3 inches in diameter and 5 percent of stones 3/4 to 3 inches in diameter, most of them are dolomite and partly weathered; common roots; mildly alkaline; gradual wavy boundary.

IICl 68L1134 91 to 130 cm (36 to 51 inches). Brown (7.5YR 5/4) heavy fine sandy loam; weak fine fragmental blocks; friable when moist; 5 percent of volume composed of stones over 3 inches in diameter and 5 percent of stones 3/4 to 3 inches in diameter; a few bright chroma mottles, and spots and streaks of free carbonates; few roots; strong effervescence.

IIC2 68L1135 130 to 170 cm (51 to 67 inches). Brown (7.5YR 5/4) heavy fine sandy losm; weak fine fragmental blocks; friable when moist; 10 percent of volume composed of stones over 3 inches in diameter and 3 percent of stones 3/4 to 3 inches in diameter; few bright chroma mottles, and streaks of free carbonates; strong effervescence.

<u>Remarks</u>: Soil nearly dry in solum and moist in substratum when sampled. The glacial till is bordering on loam texture with a moderate to high carbonate content. Original vegetation consisted of mixed hardwood with occasional scattered conifers. In the past this soil was included in with the Miami series but is now considered outside of the range as presently defined.

Soil temperature: At 10 inches - 20.0° C.
20 inches - 19.5° C.
40 inches - 17.0° C.

^{*}This pedon lacks tongues of albic material in the argillic horizon; therefore, it is a texadjunct to the Waymor series.

U. S. DEPARTMENT OF AGRICULTURE SDIL CONSERVATION SERVICE MATSC SDIL SURVEY INVESTIGATIONS UNIT LINCOIN. NERRASKA

DEPTH HORIZON (	801 15- 8AR TO CLAY
DEPTH HORIZON (	801 15- 8AR TO CLAY
CM	TO CLAY
100-018   AP   38.5   53.4   8.1   .8   2.0   4.4   17.2   14.1   31.5   21.9   24.4   56.5   8   18-28   A2   42.4   52.0   5.6   .9   2.8   5.8   18.0   14.9   31.2   20.8   27.5   57.0   7   728-38   281   44.3   38.9   16.8   2.0   4.5   8.0   18.8   11.0   19.4   19.5   33.3   40.9   17   17   17   17   17   17   17   1	
DEPTH (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULK DENSITY )1 WATER CONTENT ) CARBONATE ( PH VOL. ( MEIGHT ) 4A10 4A1H 4D10 481C 4812 4C1 6E18 3A1A 8C1A GT GT 75-20 20-5 5-2 LT 20-2 1/3- 0VEN COLE 1/10 1/3- 15- MRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR BAR CM/ 2 .002 H20 CM PCT PCT ( PCT LT 75 ) LT20 G/CC G/CC PCT PCT PCT CM PCT PCT	
EPTH (PARTICLE SIZE ANALYSIS, HM, 38, 381, 38214 BULK DENSITY )1 MATER CONTENT CARBONATE ( PH VOL. ( MEIGHT) 4A10 4A1H 401 481C 482 4C1 6E18 3A1A 8C1A GT GT 75-20 20-5 5-2 LT 20-2 1/3- 0VEN COLE 1/10 1/3- 15- HRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR CH/ 2 .002 H20 CM PCT PCT ( PCT LT 75 ) LT20 G/CC G/CC PCT PCT CM PCT PCT	
PARTICLE SIZE ANALYSIS, MM, 38, 381, 3821( BULK DENSITY )!WATER CONTENT) CARBONATE (PH VOL. ( MEIGHT) 4A10 4A1H 4D1C 481C 482 4C1 6E18 3A1A 8C1A GT GT 75-20 20-5 5-2 LT 20-2 1/3- 0VEN COLE 1/10 1/3- 15- MRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR BAR CM/ 2 .002 H20 CM PCT PCT ( PCT LT 75 ) LT20 G/CC G/CC PCT PCT PCT CM PCT PCT	
PARTICLE SIZE ANALYSIS, MM, 36, 381, 38214 BULK DENSITY )!WATER CONTENT) CARBONATE (PH VOL. ( MEIGHT) 4A10 4A1H 4D1C 4B1C 4B1C 4B1C 6E1B 3A1A 8C1A GT GT 75-20 20-5 5-2 LT 20-2 1/3- 0VEN COLE 1/10 1/3- 15- MRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR CM/ 2 .002 H20 CM PCT PCT ( PCT LT 75 ) LT20 G/CC G/CC PCT PCT CM PCT PCT	
DEPTH (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULK DENSITY )1 WATER CONTENT ) CARBONATE ( PH VOL. ( MEIGHT ) 4A10 4A1H 4D10 481C 4812 4C1 6E18 3A1A 8C1A GT GT 75-20 20-5 5-2 LT 20-2 1/3- 0VEN COLE 1/10 1/3- 15- MRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR BAR CM/ 2 .002 H20 CM PCT PCT ( PCT LT 75 ) LT20 G/CC G/CC PCT PCT PCT CM PCT PCT	
DEPTH (PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)( BULK DENSITY )1 WATER CONTENT ) CARBONATE ( PH VOL. ( MEIGHT ) 4A10 4A1H 4D1 4B1C 4B1C 4B2 4C1 6E18 3A1A 8C1A GT GT 75-20 20-5 5-2 LT 20-2 1/3- OVEN COLE 1/10 1/3- 15- MRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR BAR CM/ 2 .002 H20 CM PCT PCT ( PCT LT 75 ) LT20 G/CC G/CC PCT PCT PCT CM PCT PCT	
DEPTH 1PARTICLE SIZE ANALYSIS, MM, 38, 381, 382)1 BULK DENSITY )1MATER CONTENT) CARBONATE (PH VOL. (MEIGHT) 4A1D 4A1H 4D1 4B1C 4B1C 4B2 4C1 6E1B 3A1A 8C1A 6C1 GT 75-20 20-5 5-2 LT 20-2 1/3- 0VEN CDLE 1/10 1/3- 15- MRD LT LT 1/1 2 75 074 PCT BAR DRY BAR BAR BAR CM/ 2 .002 H2O CM PCT PCT ( PCT LT 75) LT20 G/CC G/CC PCT PCT PCT CM PCT PCT	
	8C1
	243
18-28 1 0 0 1 1 60 2 1.67 1.69 .004 12.3 5.6 .11 0 6.7 38-61 15 15 10 TR TR 55 3 1.49 1.60 .020 16.8 9.4 .09 TR 0 7.3 61-89 15 15 5 5 TR 50 8 1.48 1.57 .017 19.1 6.9 .15 18 0 7.9 19-147 15 5 5 10 5 50 11 1.87 1.90 .005 13.6 5.1 .14 35 0 8.2	
38-61 15 15 10 TR TR 55 3 1.49 1.60 .020 16.8 9.4 .09 TR 0 7.3 161-89 15 15 5 5 TR 50 8 1.48 1.57 .017 19.1 6.9 .15 18 0 7.9 189-119 4 0 0 6 1 62 7 1.58 1.64 .012 17.1 7.6 .14 22 0 7.9 19-147 15 5 5 10 5 50 11 1.87 1.90 .005 13.6 5.1 .14 35 0 8.2	5.
161-89 15 15 5 5 TR 50 8 1.48 1.57 .017 19.1 6.9 .15 18 0 7.9 189-119 4 0 0 6 1 62 7 1.58 1.64 .012 17.1 7.6 .14 22 0 7.9 19-147 15 5 5 10 5 50 11 1.87 1.90 .005 13.6 5.1 .14 35 0 8.2	6.
89-119	7,
19-147 15 5 5 10 5 50 11 1-87 1-90 -005 13-6 5-1 -14 35 0 8-2	7.
PEPTH LORGANIC MATTER ) IRON PHOS (EXTRACTABLE BASES 5844) ACTY AL (CAT EXCH) RATIO RATIO CA (BASE	SAI
AALA ABLA CAN ACDA ACLA ANDE ADDO ADDA ADDA ANDA AHLA AGID 5434 5464 8DL 8D3 5F 5C3	5C1
ORGN NITG EXT TOTL CA MG VA K SUM BACL KCL EXTB NHAC NHAC CA SAT EXTB CARB FE EXT TOTL CA MG VA K SUM BACL KCL EXTB NHAC NHAC CA SAT EXTB	MH
	PCI
00-Q18 L-9LA 0.7 7.6 2.9 0.1 0.3 10.9 3.6 14.5 10.0 1.20 2.6 76 75	10
•	

Soil classification: Typic Hapludalf; fine-losmy, mixed, mesic.

Soil: Waymor taxadjunct*. Soil No.: S68WI-36-2.

Soil No.: SGWI-36-2. Location: Manitowoc County, Wisconsin; SW1, SW2, Sec. 10, T. 21 N., R. 22 E.; 140 feet east of road and 60 feet

south of field boundary.

Climate: The climate is humid continental; mean annual temperature ranges from 45° to 47° F; mean annual precipi-

tation ranges from 26 to 32 inches; and the frost-free season is about 135 days. Vegetation and land use: Native vegetation was mixed hardwoods, predominantly maple, basswood, beech, yellow

birch, and oak. About 80 percent of this soil is cultivated or in pasture. Corn, oats, and legume hay are the principal crops.

Parent material: Calcareous loam on sandy loam glacial till with a thin silt mantle.

Physiography: Gently sloping to moderately steep plane and convex slopes on glacial ground moraine.

Topography: Site is on a 3 percent convex slope with a southwest aspect.

Drainage: Well drained. Ground water: Deep. Erosion: Slight.

Permeability: Moderate.

Described by: R. Fox, E. Link, H. Lorenz, Aug. 21, 1968.

(Colors are for moist soil unless otherwise stated)

Ap 68L1136 0 to 18 cm (0 to 7 inches). Very dark grayish brown (10YR 3/2) silt losm, light brownish gray (10YR 6/2) dry; weak fine subangular blocky structure; friable; common roots; mildly alkaline; abrupt smooth boundary.

A2 681137 18 to 28 cm (7 to 11 inches). Brown (10YR 5/3) silt losm; weak medium platy structure; friable when moist; common roots; moderately alkaline; clear wavy boundary.

IIB1 68L1138 28 to 38 cm (11 to 15 inches). Reddish brown (5YR 4/4, crushed) loam; weak fine subangular blocky structure; friable when moist; silt coatings (skeletans) grayish brown (10YR 5/2) on peds; common roots; moderately alkaline; clear wavy boundary.

IIB21t 68L1139 38 to 61 cm (15 to 24 inches). Reddish brown (5YR 4/4, crushed) clay loam; moderate fine angular blocky structure; firm when moist; thick continuous clay films with dark reddish brown (5YR 3/4) colors on faces of peds; 10 percent of volume composed of stones over 3 inches in diameter and 5 percent of stones 3/4 to 3 inches in diameter; common roots; neutral; gradual wavy boundary.

IIB22t 681140 61 to 89 cm (24 to 35 inches). Reddish brown (5YR 4/4) clay loam; weak fine angular blocky structure; firm when moist; thick continuous clay films on faces of peds with reddish brown (5YR 4/3) color; 10 percent of volume composed of stones over 3 inches in diameter and 3 percent of stones 3/4 to 3 inches in diameter; many of these are partially weathered dolomite; common roots; moderately alkaline; gradual wavy boundary.

IIB3t 68L1141 89 to 119 cm (35 to 47 inches). Dark brown (7.5YR 4/4) light clay loam; weak medium angular blocky structure; friable when moist; thin patchy clay films on faces of peds; common roots in upper 6 inches becoming few below; moderately alkaline; clear wavy boundary.

IIC1 68L1142 119 to 147 cm (47 to 58 inches). Brown (7.5YR 5/4) losm; weak medium fragmental blocks; friable when moist; 5 percent of volume composed of stones over 3 inches in diameter and 3 percent of stones 3/4 to 3 inches in diameter; few spots and streaks of free carbonates; strong effervescence.

IIC2 68L1143 147 to 173 cm (58 to 68 inches). Brown (7.5YR 5/4) light loam; weak medium fragmental blocks; friable when moist; 5 percent of volume composed of stones over 3 inches in diameter and 3 percent of stones 3/4 to 3 inches in dismeter; spots and streaks of free carbonates; strong effervescence.

Remarks: Soil nearly dry in solum and moist in substratum when sampled. The glacial till is believed to be a light losm but contains pockets of sandy loam. It has a moderate to high carbonate content. Original vegetation was dominantly mixed hardwood with scattered conifers. In the past, this soil was included with the Miami series but is now considered to be outside the range of characteristics called for in the Mismi.

Soil temperature: At 10 inches -  $21.5^{\circ}$  C. 20 inches -  $19.5^{\circ}$  C. 40 inches -  $17.0^{\circ}$  C.

*This pedon lacks tongues of albic material in the argillic horizon; therefore, it is a taxadjunct to the Waymor series.

